Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import io, base64
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
import mediapy
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
from huggingface_hub import snapshot_download
|
11 |
+
|
12 |
+
import streamlit as st
|
13 |
+
import firebase_admin
|
14 |
+
from firebase_admin import credentials
|
15 |
+
from firebase_admin import firestore
|
16 |
+
import datetime
|
17 |
+
|
18 |
+
|
19 |
+
# load cloud firestore client which establishes a connection to dataset where we persist data
|
20 |
+
@st.experimental_singleton
|
21 |
+
def get_db_firestore():
|
22 |
+
cred = credentials.Certificate('test.json')
|
23 |
+
firebase_admin.initialize_app(cred, {'projectId': u'clinical-nlp-b9117',})
|
24 |
+
db = firestore.client()
|
25 |
+
return db
|
26 |
+
|
27 |
+
#start it up
|
28 |
+
db = get_db_firestore()
|
29 |
+
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
30 |
+
|
31 |
+
def transcribe(audio):
|
32 |
+
text = asr(audio)["text"]
|
33 |
+
return text
|
34 |
+
|
35 |
+
classifier = pipeline("text-classification")
|
36 |
+
|
37 |
+
def speech_to_text(speech):
|
38 |
+
text = asr(speech)["text"]
|
39 |
+
return text
|
40 |
+
|
41 |
+
def text_to_sentiment(text):
|
42 |
+
sentiment = classifier(text)[0]["label"]
|
43 |
+
return sentiment
|
44 |
+
|
45 |
+
def upsert(text):
|
46 |
+
date_time =str(datetime.datetime.today())
|
47 |
+
doc_ref = db.collection('Text2SpeechSentimentSave').document(date_time)
|
48 |
+
doc_ref.set({u'firefield': 'Recognize Speech', u'first': 'https://huggingface.co/spaces/awacke1/Text2SpeechSentimentSave', u'last': text, u'born': date_time,})
|
49 |
+
saved = select('Text2SpeechSentimentSave', date_time)
|
50 |
+
# check it here: https://console.firebase.google.com/u/0/project/clinical-nlp-b9117/firestore/data/~2FStreamlitSpaces
|
51 |
+
return saved
|
52 |
+
|
53 |
+
def select(collection, document):
|
54 |
+
doc_ref = db.collection(collection).document(document)
|
55 |
+
doc = doc_ref.get()
|
56 |
+
docid = ("The id is: ", doc.id)
|
57 |
+
contents = ("The contents are: ", doc.to_dict())
|
58 |
+
return contents
|
59 |
+
|
60 |
+
def selectall(text):
|
61 |
+
docs = db.collection('Text2SpeechSentimentSave').stream()
|
62 |
+
doclist=''
|
63 |
+
for doc in docs:
|
64 |
+
#docid=doc.id
|
65 |
+
#dict=doc.to_dict()
|
66 |
+
#doclist+=doc.to_dict()
|
67 |
+
r=(f'{doc.id} => {doc.to_dict()}')
|
68 |
+
doclist += r
|
69 |
+
return doclist
|
70 |
+
|
71 |
+
#demo = gr.Blocks()
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
#demo.launch(share=True)
|
76 |
+
|
77 |
+
|
78 |
+
# 1. GPT-J: Story Generation Pipeline
|
79 |
+
story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator")
|
80 |
+
|
81 |
+
# 2. LatentDiffusion: Latent Diffusion Interface
|
82 |
+
image_gen = gr.Interface.load("spaces/multimodalart/latentdiffusion")
|
83 |
+
|
84 |
+
# 3. FILM: Frame Interpolation Model (code re-use from spaces/akhaliq/frame-interpolation/tree/main)
|
85 |
+
os.system("git clone https://github.com/google-research/frame-interpolation")
|
86 |
+
sys.path.append("frame-interpolation")
|
87 |
+
from eval import interpolator, util
|
88 |
+
|
89 |
+
ffmpeg_path = util.get_ffmpeg_path()
|
90 |
+
mediapy.set_ffmpeg(ffmpeg_path)
|
91 |
+
|
92 |
+
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
|
93 |
+
interpolator = interpolator.Interpolator(model, None)
|
94 |
+
|
95 |
+
def generate_story(choice, input_text):
|
96 |
+
query = "<BOS> <{0}> {1}".format(choice, input_text)
|
97 |
+
|
98 |
+
print(query)
|
99 |
+
generated_text = story_gen(query)
|
100 |
+
generated_text = generated_text[0]['generated_text']
|
101 |
+
generated_text = generated_text.split('> ')[2]
|
102 |
+
|
103 |
+
return generated_text
|
104 |
+
|
105 |
+
def generate_images(generated_text):
|
106 |
+
steps=50
|
107 |
+
width=256
|
108 |
+
height=256
|
109 |
+
num_images=4
|
110 |
+
diversity=6
|
111 |
+
image_bytes = image_gen(generated_text, steps, width, height, num_images, diversity)
|
112 |
+
|
113 |
+
# Algo from spaces/Gradio-Blocks/latent_gpt2_story/blob/main/app.py
|
114 |
+
generated_images = []
|
115 |
+
for image in image_bytes[1]:
|
116 |
+
image_str = image[0]
|
117 |
+
image_str = image_str.replace("data:image/png;base64,","")
|
118 |
+
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
|
119 |
+
img = Image.open(io.BytesIO(decoded_bytes))
|
120 |
+
generated_images.append(img)
|
121 |
+
|
122 |
+
return generated_images
|
123 |
+
|
124 |
+
def generate_interpolation(gallery):
|
125 |
+
times_to_interpolate = 4
|
126 |
+
|
127 |
+
generated_images = []
|
128 |
+
for image_str in gallery:
|
129 |
+
image_str = image_str.replace("data:image/png;base64,","")
|
130 |
+
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
|
131 |
+
img = Image.open(io.BytesIO(decoded_bytes))
|
132 |
+
generated_images.append(img)
|
133 |
+
|
134 |
+
generated_images[0].save('frame_0.png')
|
135 |
+
generated_images[1].save('frame_1.png')
|
136 |
+
generated_images[2].save('frame_2.png')
|
137 |
+
generated_images[3].save('frame_3.png')
|
138 |
+
|
139 |
+
input_frames = ["frame_0.png", "frame_1.png", "frame_2.png", "frame_3.png"]
|
140 |
+
|
141 |
+
frames = list(util.interpolate_recursively_from_files(input_frames, times_to_interpolate, interpolator))
|
142 |
+
|
143 |
+
mediapy.write_video("out.mp4", frames, fps=15)
|
144 |
+
|
145 |
+
return "out.mp4"
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
demo = gr.Blocks()
|
150 |
+
|
151 |
+
with demo:
|
152 |
+
|
153 |
+
with demo:
|
154 |
+
#audio_file = gr.Audio(type="filepath")
|
155 |
+
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
156 |
+
text = gr.Textbox()
|
157 |
+
label = gr.Label()
|
158 |
+
saved = gr.Textbox()
|
159 |
+
savedAll = gr.Textbox()
|
160 |
+
|
161 |
+
b1 = gr.Button("Recognize Speech")
|
162 |
+
b2 = gr.Button("Classify Sentiment")
|
163 |
+
b3 = gr.Button("Save Speech to Text")
|
164 |
+
b4 = gr.Button("Retrieve All")
|
165 |
+
|
166 |
+
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
167 |
+
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
168 |
+
b3.click(upsert, inputs=text, outputs=saved)
|
169 |
+
b4.click(selectall, inputs=text, outputs=savedAll)
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
|
173 |
+
# Left column (inputs)
|
174 |
+
with gr.Column():
|
175 |
+
input_story_type = gr.Radio(choices=['superhero', 'action', 'drama', 'horror', 'thriller', 'sci_fi'], value='sci_fi', label="Genre")
|
176 |
+
input_start_text = gr.Textbox(placeholder='A teddy bear outer space', label="Starting Text")
|
177 |
+
|
178 |
+
gr.Markdown("Be sure to run each of the buttons one at a time, they depend on each others' outputs!")
|
179 |
+
|
180 |
+
# Rows of instructions & buttons
|
181 |
+
with gr.Row():
|
182 |
+
gr.Markdown("1. Select a type of story, then write some starting text! Then hit the 'Generate Story' button to generate a story! Feel free to edit the generated story afterwards!")
|
183 |
+
button_gen_story = gr.Button("Generate Story")
|
184 |
+
with gr.Row():
|
185 |
+
gr.Markdown("2. After generating a story, hit the 'Generate Images' button to create some visuals for your story! (Can re-run multiple times!)")
|
186 |
+
button_gen_images = gr.Button("Generate Images")
|
187 |
+
with gr.Row():
|
188 |
+
gr.Markdown("3. After generating some images, hit the 'Generate Video' button to create a short video by interpolating the previously generated visuals!")
|
189 |
+
button_gen_video = gr.Button("Generate Video")
|
190 |
+
|
191 |
+
# Rows of references
|
192 |
+
with gr.Row():
|
193 |
+
gr.Markdown("--Models Used--")
|
194 |
+
with gr.Row():
|
195 |
+
gr.Markdown("Story Generation: [GPT-J](https://huggingface.co/pranavpsv/gpt2-genre-story-generator)")
|
196 |
+
with gr.Row():
|
197 |
+
gr.Markdown("Image Generation Conditioned on Text: [Latent Diffusion](https://huggingface.co/spaces/multimodalart/latentdiffusion) | [Github Repo](https://github.com/CompVis/latent-diffusion)")
|
198 |
+
with gr.Row():
|
199 |
+
gr.Markdown("Interpolations: [FILM](https://huggingface.co/spaces/akhaliq/frame-interpolation) | [Github Repo](https://github.com/google-research/frame-interpolation)")
|
200 |
+
with gr.Row():
|
201 |
+
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=gradio-blocks_story_and_video_generation)")
|
202 |
+
|
203 |
+
# Right column (outputs)
|
204 |
+
with gr.Column():
|
205 |
+
output_generated_story = gr.Textbox(label="Generated Story")
|
206 |
+
output_gallery = gr.Gallery(label="Generated Story Images")
|
207 |
+
output_interpolation = gr.Video(label="Generated Video")
|
208 |
+
|
209 |
+
# Bind functions to buttons
|
210 |
+
button_gen_story.click(fn=generate_story, inputs=[input_story_type , input_start_text], outputs=output_generated_story)
|
211 |
+
button_gen_images.click(fn=generate_images, inputs=output_generated_story, outputs=output_gallery)
|
212 |
+
button_gen_video.click(fn=generate_interpolation, inputs=output_gallery, outputs=output_interpolation)
|
213 |
+
|
214 |
+
demo.launch(debug=True, enable_queue=True)
|