Spaces:
Runtime error
Runtime error
Create app.backup.py
Browse files- app.backup.py +268 -0
app.backup.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import json
|
4 |
+
from collections import defaultdict
|
5 |
+
|
6 |
+
# Create tokenizer for biomed model
|
7 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all") # https://huggingface.co/d4data/biomedical-ner-all?text=asthma
|
9 |
+
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
10 |
+
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
11 |
+
|
12 |
+
# Matplotlib for entity graph
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
plt.switch_backend("Agg")
|
15 |
+
|
16 |
+
# Load examples from JSON
|
17 |
+
import os
|
18 |
+
|
19 |
+
# Load terminology datasets:
|
20 |
+
basedir = os.path.dirname(__file__)
|
21 |
+
#dataLOINC = pd.read_csv(basedir + "\\" + f'LoincTableCore.csv')
|
22 |
+
#dataPanels = pd.read_csv(basedir + "\\" + f'PanelsAndForms-ACW1208Labeled.csv')
|
23 |
+
#dataSNOMED = pd.read_csv(basedir + "\\" + f'sct2_TextDefinition_Full-en_US1000124_20220901.txt',sep='\t')
|
24 |
+
#dataOMS = pd.read_csv(basedir + "\\" + f'SnomedOMS.csv')
|
25 |
+
#dataICD10 = pd.read_csv(basedir + "\\" + f'ICD10Diagnosis.csv')
|
26 |
+
|
27 |
+
dataLOINC = pd.read_csv(f'LoincTableCore.csv')
|
28 |
+
dataPanels = pd.read_csv(f'PanelsAndForms-ACW1208Labeled.csv')
|
29 |
+
dataSNOMED = pd.read_csv(f'sct2_TextDefinition_Full-en_US1000124_20220901.txt',sep='\t')
|
30 |
+
dataOMS = pd.read_csv(f'SnomedOMS.csv')
|
31 |
+
dataICD10 = pd.read_csv(f'ICD10Diagnosis.csv')
|
32 |
+
|
33 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
34 |
+
EXAMPLES = {}
|
35 |
+
#with open(dir_path + "\\" + "examples.json", "r") as f:
|
36 |
+
with open("examples.json", "r") as f:
|
37 |
+
example_json = json.load(f)
|
38 |
+
EXAMPLES = {x["text"]: x["label"] for x in example_json}
|
39 |
+
|
40 |
+
def MatchLOINC(name):
|
41 |
+
#basedir = os.path.dirname(__file__)
|
42 |
+
pd.set_option("display.max_rows", None)
|
43 |
+
#data = pd.read_csv(basedir + "\\" + f'LoincTableCore.csv')
|
44 |
+
data = dataLOINC
|
45 |
+
swith=data.loc[data['COMPONENT'].str.contains(name, case=False, na=False)]
|
46 |
+
return swith
|
47 |
+
|
48 |
+
def MatchLOINCPanelsandForms(name):
|
49 |
+
#basedir = os.path.dirname(__file__)
|
50 |
+
#data = pd.read_csv(basedir + "\\" + f'PanelsAndForms-ACW1208Labeled.csv')
|
51 |
+
data = dataPanels
|
52 |
+
# Assessment Name:
|
53 |
+
#swith=data.loc[data['ParentName'].str.contains(name, case=False, na=False)]
|
54 |
+
# Assessment Question:
|
55 |
+
swith=data.loc[data['LoincName'].str.contains(name, case=False, na=False)]
|
56 |
+
return swith
|
57 |
+
|
58 |
+
def MatchSNOMED(name):
|
59 |
+
#basedir = os.path.dirname(__file__)
|
60 |
+
#data = pd.read_csv(basedir + "\\" + f'sct2_TextDefinition_Full-en_US1000124_20220901.txt',sep='\t')
|
61 |
+
data = dataSNOMED
|
62 |
+
swith=data.loc[data['term'].str.contains(name, case=False, na=False)]
|
63 |
+
return swith
|
64 |
+
|
65 |
+
def MatchOMS(name):
|
66 |
+
#basedir = os.path.dirname(__file__)
|
67 |
+
#data = pd.read_csv(basedir + "\\" + f'SnomedOMS.csv')
|
68 |
+
data = dataOMS
|
69 |
+
swith=data.loc[data['SNOMED CT'].str.contains(name, case=False, na=False)]
|
70 |
+
return swith
|
71 |
+
|
72 |
+
def MatchICD10(name):
|
73 |
+
#basedir = os.path.dirname(__file__)
|
74 |
+
#data = pd.read_csv(basedir + "\\" + f'ICD10Diagnosis.csv')
|
75 |
+
data = dataICD10
|
76 |
+
swith=data.loc[data['Description'].str.contains(name, case=False, na=False)]
|
77 |
+
return swith
|
78 |
+
|
79 |
+
def SaveResult(text, outputfileName):
|
80 |
+
#try:
|
81 |
+
basedir = os.path.dirname(__file__)
|
82 |
+
savePath = outputfileName
|
83 |
+
print("Saving: " + text + " to " + savePath)
|
84 |
+
from os.path import exists
|
85 |
+
file_exists = exists(savePath)
|
86 |
+
if file_exists:
|
87 |
+
with open(outputfileName, "a") as f: #append
|
88 |
+
#for line in text:
|
89 |
+
f.write(str(text.replace("\n"," ")))
|
90 |
+
f.write('\n')
|
91 |
+
else:
|
92 |
+
with open(outputfileName, "w") as f: #write
|
93 |
+
#for line in text:
|
94 |
+
f.write(str(text.replace("\n"," ")))
|
95 |
+
f.write('\n')
|
96 |
+
#except ValueError as err:
|
97 |
+
# raise ValueError("File Save Error in SaveResult \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None
|
98 |
+
|
99 |
+
return
|
100 |
+
|
101 |
+
def loadFile(filename):
|
102 |
+
try:
|
103 |
+
basedir = os.path.dirname(__file__)
|
104 |
+
loadPath = basedir + "\\" + filename
|
105 |
+
|
106 |
+
print("Loading: " + loadPath)
|
107 |
+
|
108 |
+
from os.path import exists
|
109 |
+
file_exists = exists(loadPath)
|
110 |
+
|
111 |
+
if file_exists:
|
112 |
+
with open(loadPath, "r") as f: #read
|
113 |
+
contents = f.read()
|
114 |
+
print(contents)
|
115 |
+
return contents
|
116 |
+
|
117 |
+
except ValueError as err:
|
118 |
+
raise ValueError("File Save Error in SaveResult \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None
|
119 |
+
|
120 |
+
return ""
|
121 |
+
|
122 |
+
def get_today_filename():
|
123 |
+
from datetime import datetime
|
124 |
+
date = datetime.now().strftime("%Y_%m_%d-%I.%M.%S.%p")
|
125 |
+
#print(f"filename_{date}") 'filename_2023_01_12-03-29-22_AM'
|
126 |
+
return f"MedNER_{date}.csv"
|
127 |
+
|
128 |
+
def get_base(filename):
|
129 |
+
basedir = os.path.dirname(__file__)
|
130 |
+
loadPath = basedir + "\\" + filename
|
131 |
+
#print("Loading: " + loadPath)
|
132 |
+
return loadPath
|
133 |
+
|
134 |
+
def group_by_entity(raw):
|
135 |
+
outputFile = get_base(get_today_filename())
|
136 |
+
out = defaultdict(int)
|
137 |
+
|
138 |
+
for ent in raw:
|
139 |
+
out[ent["entity_group"]] += 1
|
140 |
+
myEntityGroup = ent["entity_group"]
|
141 |
+
print("Found entity group type: " + myEntityGroup)
|
142 |
+
|
143 |
+
if (myEntityGroup in ['Sign_symptom', 'Detailed_description', 'History', 'Activity', 'Medication' ]):
|
144 |
+
eterm = ent["word"].replace('#','')
|
145 |
+
minlength = 3
|
146 |
+
if len(eterm) > minlength:
|
147 |
+
print("Found eterm: " + eterm)
|
148 |
+
eterm.replace("#","")
|
149 |
+
g1=MatchLOINC(eterm)
|
150 |
+
g2=MatchLOINCPanelsandForms(eterm)
|
151 |
+
g3=MatchSNOMED(eterm)
|
152 |
+
g4=MatchOMS(eterm)
|
153 |
+
g5=MatchICD10(eterm)
|
154 |
+
sAll = ""
|
155 |
+
|
156 |
+
print("Saving to output file " + outputFile)
|
157 |
+
# Create harmonisation output format of input to output code, name, Text
|
158 |
+
|
159 |
+
try: # 18 fields, output to labeled CSV dataset for results teaching on scored regret changes to action plan with data inputs
|
160 |
+
col = " 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19"
|
161 |
+
|
162 |
+
#LOINC
|
163 |
+
g11 = g1['LOINC_NUM'].to_string().replace(","," ").replace("\n"," ")
|
164 |
+
g12 = g1['COMPONENT'].to_string().replace(","," ").replace("\n"," ")
|
165 |
+
s1 = ("LOINC," + myEntityGroup + "," + eterm + ",questions of ," + g12 + "," + g11 + ", Label,Value, Label,Value, Label,Value ")
|
166 |
+
if g11 != 'Series([] )': SaveResult(s1, outputFile)
|
167 |
+
|
168 |
+
#LOINC Panels
|
169 |
+
g21 = g2['Loinc'].to_string().replace(","," ").replace("\n"," ")
|
170 |
+
g22 = g2['LoincName'].to_string().replace(","," ").replace("\n"," ")
|
171 |
+
g23 = g2['ParentLoinc'].to_string().replace(","," ").replace("\n"," ")
|
172 |
+
g24 = g2['ParentName'].to_string().replace(","," ").replace("\n"," ")
|
173 |
+
# s2 = ("LOINC Panel," + myEntityGroup + "," + eterm + ",name of ," + g22 + "," + g21 + ", and Parent codes of ," + g23 + ", with Parent names of ," + g24 + ", Label,Value ")
|
174 |
+
s2 = ("LOINC Panel," + myEntityGroup + "," + eterm + ",name of ," + g22 + "," + g21 + "," + g24 + ", and Parent codes of ," + g23 + "," + ", Label,Value ")
|
175 |
+
if g21 != 'Series([] )': SaveResult(s2, outputFile)
|
176 |
+
|
177 |
+
#SNOMED
|
178 |
+
g31 = g3['conceptId'].to_string().replace(","," ").replace("\n"," ").replace("\l"," ").replace("\r"," ")
|
179 |
+
g32 = g3['term'].to_string().replace(","," ").replace("\n"," ").replace("\l"," ").replace("\r"," ")
|
180 |
+
s3 = ("SNOMED Concept," + myEntityGroup + "," + eterm + ",terms of ," + g32 + "," + g31 + ", Label,Value, Label,Value, Label,Value ")
|
181 |
+
if g31 != 'Series([] )': SaveResult(s3, outputFile)
|
182 |
+
|
183 |
+
#OMS
|
184 |
+
g41 = g4['Omaha Code'].to_string().replace(","," ").replace("\n"," ")
|
185 |
+
g42 = g4['SNOMED CT concept ID'].to_string().replace(","," ").replace("\n"," ")
|
186 |
+
g43 = g4['SNOMED CT'].to_string().replace(","," ").replace("\n"," ")
|
187 |
+
g44 = g4['PR'].to_string().replace(","," ").replace("\n"," ")
|
188 |
+
g45 = g4['S&S'].to_string().replace(","," ").replace("\n"," ")
|
189 |
+
s4 = ("OMS," + myEntityGroup + "," + eterm + ",concepts of ," + g44 + "," + g45 + ", and SNOMED codes of ," + g43 + ", and OMS problem of ," + g42 + ", and OMS Sign Symptom of ," + g41)
|
190 |
+
if g41 != 'Series([] )': SaveResult(s4, outputFile)
|
191 |
+
|
192 |
+
#ICD10
|
193 |
+
g51 = g5['Code'].to_string().replace(","," ").replace("\n"," ")
|
194 |
+
g52 = g5['Description'].to_string().replace(","," ").replace("\n"," ")
|
195 |
+
s5 = ("ICD10," + myEntityGroup + "," + eterm + ",descriptions of ," + g52 + "," + g51 + ", Label,Value, Label,Value, Label,Value ")
|
196 |
+
if g51 != 'Series([] )': SaveResult(s5, outputFile)
|
197 |
+
|
198 |
+
except ValueError as err:
|
199 |
+
raise ValueError("Error in group by entity \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None
|
200 |
+
|
201 |
+
return outputFile
|
202 |
+
|
203 |
+
|
204 |
+
def plot_to_figure(grouped):
|
205 |
+
fig = plt.figure()
|
206 |
+
plt.bar(x=list(grouped.keys()), height=list(grouped.values()))
|
207 |
+
plt.margins(0.2)
|
208 |
+
plt.subplots_adjust(bottom=0.4)
|
209 |
+
plt.xticks(rotation=90)
|
210 |
+
return fig
|
211 |
+
|
212 |
+
|
213 |
+
def ner(text):
|
214 |
+
raw = pipe(text)
|
215 |
+
ner_content = {
|
216 |
+
"text": text,
|
217 |
+
"entities": [
|
218 |
+
{
|
219 |
+
"entity": x["entity_group"],
|
220 |
+
"word": x["word"],
|
221 |
+
"score": x["score"],
|
222 |
+
"start": x["start"],
|
223 |
+
"end": x["end"],
|
224 |
+
}
|
225 |
+
for x in raw
|
226 |
+
],
|
227 |
+
}
|
228 |
+
|
229 |
+
outputFile = group_by_entity(raw)
|
230 |
+
label = EXAMPLES.get(text, "Unknown")
|
231 |
+
outputDataframe = pd.read_csv(outputFile)
|
232 |
+
return (ner_content, outputDataframe, outputFile)
|
233 |
+
|
234 |
+
demo = gr.Blocks()
|
235 |
+
with demo:
|
236 |
+
gr.Markdown(
|
237 |
+
"""
|
238 |
+
# 🩺⚕️NLP Clinical Ontology Biomedical NER
|
239 |
+
"""
|
240 |
+
)
|
241 |
+
input = gr.Textbox(label="Note text", value="")
|
242 |
+
|
243 |
+
with gr.Tab("Biomedical Entity Recognition"):
|
244 |
+
output=[
|
245 |
+
gr.HighlightedText(label="NER", combine_adjacent=True),
|
246 |
+
#gr.JSON(label="Entity Counts"),
|
247 |
+
#gr.Label(label="Rating"),
|
248 |
+
#gr.Plot(label="Bar"),
|
249 |
+
gr.Dataframe(label="Dataframe"),
|
250 |
+
gr.File(label="File"),
|
251 |
+
]
|
252 |
+
examples=list(EXAMPLES.keys())
|
253 |
+
gr.Examples(examples, inputs=input)
|
254 |
+
input.change(fn=ner, inputs=input, outputs=output)
|
255 |
+
|
256 |
+
with gr.Tab("Clinical Terminology Resolution"):
|
257 |
+
with gr.Row(variant="compact"):
|
258 |
+
btnLOINC = gr.Button("LOINC")
|
259 |
+
btnPanels = gr.Button("Panels")
|
260 |
+
btnSNOMED = gr.Button("SNOMED")
|
261 |
+
btnOMS = gr.Button("OMS")
|
262 |
+
btnICD10 = gr.Button("ICD10")
|
263 |
+
|
264 |
+
examples=list(EXAMPLES.keys())
|
265 |
+
gr.Examples(examples, inputs=input)
|
266 |
+
input.change(fn=ner, inputs=input, outputs=output)
|
267 |
+
#layout="vertical"
|
268 |
+
demo.launch(debug=True)
|