Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 25,580 Bytes
0389c02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
#!/usr/bin/env python3
import os
import re
import glob
import json
import base64
import zipfile
import random
import requests
import openai
from PIL import Image
from urllib.parse import quote
import streamlit as st
import streamlit.components.v1 as components
# For demonstration, we'll import from huggingface_hub
# (You can omit if you're not using HF or adapt your own client)
from huggingface_hub import InferenceClient
# ----------------------------
# Placeholder data structures
# ----------------------------
# Example placeholders for prompt prefixes
PromptPrefix = "AI-Search: "
PromptPrefix2 = "AI-Refine: "
PromptPrefix3 = "AI-JS: "
# Minimal example of a roleplaying glossary
roleplaying_glossary = {
"Core Rulebooks": {
"Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"],
"GURPS": ["Basic Set Characters", "Basic Set Campaigns"]
},
"Campaigns & Adventures": {
"Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"]
}
}
# Minimal example of a transhuman glossary
transhuman_glossary = {
"Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"],
"Cybernetics": ["Robotic Limbs", "Augmented Eyes"],
}
# Just to demonstrate how your "search_arxiv" or "SpeechSynthesis" etc. might be placeholders
def process_text(text):
st.write(f"process_text called with: {text}")
def process_text2(text_input):
return f"[process_text2 placeholder] Received: {text_input}"
def search_arxiv(text):
st.write(f"search_arxiv called with: {text}")
def SpeechSynthesis(text):
st.write(f"SpeechSynthesis called with: {text}")
def process_image(image_file, prompt):
return f"[process_image placeholder] Processing {image_file} with prompt: {prompt}"
def process_video(video_file, seconds_per_frame):
st.write(f"[process_video placeholder] Video: {video_file}, seconds/frame: {seconds_per_frame}")
def search_glossary(content):
st.write(f"search_glossary called with: {content}")
# If you have HF Inference endpoint, set them here, else placeholders
API_URL = "https://huggingface-inference-endpoint-placeholder"
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
@st.cache_resource
def InferenceLLM(prompt):
return f"[InferenceLLM placeholder response to prompt: {prompt}]"
# --------------------------------------
# Display Entities & Glossary Functions
# --------------------------------------
@st.cache_resource
def display_glossary_entity(k):
"""
Example of how you'd create multiple links for a glossary entity.
This was in your original snippet. We'll keep it short.
"""
search_urls = {
"๐๐ArXiv": lambda k: f"/?q={quote(k)}",
"๐Analyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}",
"๐PyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}",
"๐ฌJSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}",
"๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"๐": lambda k: f"https://www.google.com/search?q={quote(k)}",
"๐": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"๐ฅ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"๐ฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)
@st.cache_resource
def display_glossary_grid(roleplaying_glossary):
"""
Displays a glossary in columns with multiple link emojis.
"""
search_urls = {
"๐๐ArXiv": lambda k: f"/?q={quote(k)}",
"๐Analyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}",
"๐PyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}",
"๐ฌJSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}",
"๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"๐": lambda k: f"https://www.google.com/search?q={quote(k)}",
"๐": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"๐ฅ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"๐ฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
for category, details in roleplaying_glossary.items():
st.write(f"### {category}")
cols = st.columns(len(details))
for idx, (game, terms) in enumerate(details.items()):
with cols[idx]:
st.markdown(f"#### {game}")
for term in terms:
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
st.markdown(f"**{term}** <small>{links_md}</small>", unsafe_allow_html=True)
# --------------------
# File-Handling Logic
# --------------------
def load_file(file_path):
try:
with open(file_path, "r", encoding='utf-8') as f:
return f.read()
except:
return ""
@st.cache_resource
def create_zip_of_files(files):
zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
@st.cache_resource
def get_zip_download_link(zip_file):
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
return href
def get_table_download_link(file_path):
"""
Creates a download link for a single file from your snippet.
"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1]
mime_map = {
'.txt': 'text/plain',
'.py': 'text/plain',
'.xlsx': 'text/plain',
'.csv': 'text/plain',
'.htm': 'text/html',
'.md': 'text/markdown',
'.wav': 'audio/wav'
}
mime_type = mime_map.get(ext, 'application/octet-stream')
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
except:
return ''
def get_file_size(file_path):
return os.path.getsize(file_path)
def compare_and_delete_files(files):
"""
Compare file sizes. If duplicates exist, keep only the latest.
"""
if not files:
st.warning("No files to compare.")
return
file_sizes = {}
for file in files:
size = os.path.getsize(file)
file_sizes.setdefault(size, []).append(file)
# Remove all but the latest file for each size
for size, paths in file_sizes.items():
if len(paths) > 1:
latest_file = max(paths, key=os.path.getmtime)
for file in paths:
if file != latest_file:
os.remove(file)
st.success(f"Deleted {file} as a duplicate.")
st.rerun()
def FileSidebar():
"""
Renders the file sidebar with all the open/view/run/delete logic.
"""
all_files = glob.glob("*.md")
# Example logic filtering filenames
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 5]
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
# Buttons for "Delete All" and "Download"
Files1, Files2 = st.sidebar.columns(2)
with Files1:
if st.button("๐ Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
with Files2:
if st.button("โฌ๏ธ Download"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
file_contents = ''
file_name = ''
next_action = ''
# Each file row
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])
with col1:
# Show an emoji button to do "md"
if st.button("๐", key="md_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'md'
st.session_state['next_action'] = next_action
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("๐", key="open_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'open'
st.session_state['lastfilename'] = file
st.session_state['filename'] = file
st.session_state['filetext'] = file_contents
st.session_state['next_action'] = next_action
with col4:
if st.button("โถ๏ธ", key="read_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'search'
st.session_state['next_action'] = next_action
with col5:
if st.button("๐", key="delete_"+file):
os.remove(file)
file_name = file
st.rerun()
next_action = 'delete'
st.session_state['next_action'] = next_action
# Duplicate detection
file_sizes = [get_file_size(file) for file in all_files]
previous_size = None
st.sidebar.title("File Operations")
for file, size in zip(all_files, file_sizes):
duplicate_flag = "๐ฉ" if size == previous_size else ""
with st.sidebar.expander(f"File: {file} {duplicate_flag}"):
st.text(f"Size: {size} bytes")
if st.button("View", key=f"view_{file}"):
try:
with open(file, "r", encoding='utf-8') as f:
file_content = f.read()
st.code(file_content, language="markdown")
except UnicodeDecodeError:
st.error("Failed to decode the file with UTF-8.")
if st.button("Delete", key=f"delete3_{file}"):
os.remove(file)
st.rerun()
previous_size = size
# If we have loaded something
if len(file_contents) > 0:
if next_action == 'open':
open1, open2 = st.columns([0.8, 0.2])
with open1:
file_name_input = st.text_input('File Name:', file_name, key='file_name_input', on_change=None)
file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area')
# Minimal โSaveโ stubs
if st.button('๐พ Save File'):
with open(file_name_input, 'w', encoding='utf-8') as f:
f.write(file_content_area)
st.markdown(f'Saved {file_name_input} successfully.')
elif next_action == 'search':
# Example usage
file_content_area = st.text_area("File Contents:", file_contents, height=500)
user_prompt = PromptPrefix2 + file_contents
st.markdown(user_prompt)
if st.button('๐Re-Code'):
search_arxiv(file_contents)
elif next_action == 'md':
st.markdown(file_contents)
SpeechSynthesis(file_contents)
if st.button('๐Run'):
st.write("Running GPT logic placeholder...")
# ---------------------------
# Basic Scoring / Glossaries
# ---------------------------
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)
def generate_key(label, header, idx):
return f"{header}_{label}_{idx}_key"
def update_score(key, increment=1):
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
else:
score_data = {"clicks": 0, "score": 0}
score_data["clicks"] += increment
score_data["score"] += increment
with open(score_file, "w") as file:
json.dump(score_data, file)
return score_data["score"]
def load_score(key):
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
return score_data["score"]
return 0
def display_buttons_with_scores(num_columns_text):
"""
Show buttons that track a 'score' from your glossary data.
"""
game_emojis = {
"Dungeons and Dragons": "๐",
"Call of Cthulhu": "๐",
"GURPS": "๐ฒ",
"Pathfinder": "๐บ๏ธ",
"Kindred of the East": "๐
",
"Changeling": "๐",
}
topic_emojis = {
"Core Rulebooks": "๐",
"Maps & Settings": "๐บ๏ธ",
"Game Mechanics & Tools": "โ๏ธ",
"Monsters & Adversaries": "๐น",
"Campaigns & Adventures": "๐",
"Creatives & Assets": "๐จ",
"Game Master Resources": "๐ ๏ธ",
"Lore & Background": "๐",
"Character Development": "๐ง",
"Homebrew Content": "๐ง",
"General Topics": "๐",
}
for category, games in roleplaying_glossary.items():
category_emoji = topic_emojis.get(category, "๐")
st.markdown(f"## {category_emoji} {category}")
for game, terms in games.items():
game_emoji = game_emojis.get(game, "๐ฎ")
for term in terms:
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
score = load_score(key)
if st.button(f"{game_emoji} {category} {game} {term} {score}", key=key):
newscore = update_score(key.replace('?',''))
st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}")
# --------------------
# Image & Video Grids
# --------------------
def display_images_and_wikipedia_summaries(num_columns=4):
"""
Display all .png images in the current directory in a grid, referencing the name as a 'keyword'.
"""
image_files = [f for f in os.listdir('.') if f.endswith('.png')]
if not image_files:
st.write("No PNG images found in the current directory.")
return
# Sort by length of filename, just as an example
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for image_file in image_files_sorted:
with cols[col_index % num_columns]:
try:
image = Image.open(image_file)
st.image(image, use_column_width=True)
k = image_file.split('.')[0]
display_glossary_entity(k)
# Provide a text input for user interactions
image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}")
if len(image_text_input) > 0:
response = process_image(image_file, image_text_input)
st.markdown(response)
except:
st.write(f"Could not open {image_file}")
col_index += 1
def display_videos_and_links(num_columns=4):
"""
Displays all .mp4 or .webm videos found in the current directory in a grid.
"""
video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))]
if not video_files:
st.write("No MP4 or WEBM videos found in the current directory.")
return
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for video_file in video_files_sorted:
with cols[col_index % num_columns]:
k = video_file.split('.')[0]
st.video(video_file, format='video/mp4', start_time=0)
display_glossary_entity(k)
# Provide a text input
video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}")
if video_text_input:
try:
# Hard-coded example
seconds_per_frame = 10
process_video(video_file, seconds_per_frame)
except ValueError:
st.error("Invalid input for seconds per frame!")
col_index += 1
# -------------------------------------
# Query Param Helpers from your snippet
# -------------------------------------
def get_all_query_params(key):
return st.query_params().get(key, [])
def clear_query_params():
st.query_params()
def display_content_or_image(query):
"""
If a query matches something in transhuman_glossary or
a local image, show it. Otherwise warn no match.
"""
for category, term_list in transhuman_glossary.items():
for term in term_list:
if query.lower() in term.lower():
st.subheader(f"Found in {category}:")
st.write(term)
return True
image_path = f"images/{query}.png"
if os.path.exists(image_path):
st.image(image_path, caption=f"Image for {query}")
return True
st.warning("No matching content or image found.")
return False
# ------------------------------------
# MERMAID DIAGRAM with Clickable Links
# ------------------------------------
def generate_mermaid_html(mermaid_code: str) -> str:
"""
Returns HTML embedding a Mermaid diagram. We embed the code
in <div class="mermaid"> and center it with CSS.
"""
return f"""
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
<style>
.centered-mermaid {{
display: flex;
justify-content: center;
margin: 20px auto;
}}
.mermaid {{
/* Let the diagram scale or otherwise style as you wish */
max-width: 800px;
}}
</style>
</head>
<body>
<div class="mermaid centered-mermaid">
{mermaid_code}
</div>
<script>
mermaid.initialize({{ startOnLoad: true }});
</script>
</body>
</html>
"""
def append_model_param(url: str, model_selected: bool) -> str:
"""
If 'Model' checkbox is selected, we append '&model=1' or '?model=1' to the URL.
We'll handle whether the URL already has a '?' or not.
"""
if not model_selected:
return url
delimiter = "&" if "?" in url else "?"
return f"{url}{delimiter}model=1"
# For demonstration, we add clickable nodes & edges:
# click <nodeId> "<URL>" "_self"
# If you want edges to be clickable, you can label them as well,
# but Mermaid typically only has a 'click' property for nodes.
DEFAULT_MERMAID = """
flowchart LR
%% Notice we have "click LLM ..." lines:
U((User ๐)) -- "Talk ๐ฃ๏ธ" --> LLM[LLM Agent ๐ค\\nExtract Info]
click U "/?q=User%20๐" _self
click LLM "/?q=LLM%20Agent%20Extract%20Info" _self
LLM -- "Query ๐" --> HS[Hybrid Search ๐\\nVector+NER+Lexical]
click HS "/?q=Hybrid%20Search%20Vector+NER+Lexical" _self
HS -- "Reason ๐ค" --> RE[Reasoning Engine ๐ ๏ธ\\nNeuralNetwork+Medical]
click RE "/?q=Reasoning%20Engine%20NeuralNetwork+Medical" _self
RE -- "Link ๐ก" --> KG((Knowledge Graph ๐\\nOntology+GAR+RAG))
click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" _self
%% If you want an "edge click" to pass ?r= something,
%% Mermaid doesn't have direct 'click' for edges,
%% but you can define them as nodes or use linkStyle trick, etc.
"""
# ---------------------------
# Streamlit Main App
# ---------------------------
def main():
st.set_page_config(page_title="Mermaid + Clickable Links Demo", layout="wide")
# 1) Parse query strings on page load
query_params = st.experimental_get_query_params()
current_q = query_params.get("q", [""])[0] # If present, first string
current_r = query_params.get("r", [""])[0]
# 2) Let user pick if they want to add the "model=1" param to clickable links
st.sidebar.write("## Diagram Link Settings")
model_selected = st.sidebar.checkbox("Append ?model=1 to each link?")
# 3) Generate a dynamic Mermaid code, appending model param if user wants
# We'll do a simple string replace to incorporate the model param
# For a robust approach, parse each URL carefully, then reassemble.
base_diagram = DEFAULT_MERMAID
lines = base_diagram.strip().split("\n")
new_lines = []
for line in lines:
if "click " in line and '"/?' in line:
# e.g. click LLM "/?q=LLM%20Agent" _self
# let's isolate the URL part
parts = re.split(r'click\s+\S+\s+"([^"]+)"\s+("_self")', line)
if len(parts) == 4:
# parts[0] = 'click LLM '
# parts[1] = '/?q=LLM%20Agent%20Extract%20Info'
# parts[2] = ' _self'
# parts[3] = '' (trailing possibly)
url = parts[1]
updated_url = append_model_param(url, model_selected)
# Recombine
new_line = f"{parts[0]}\"{updated_url}\" {parts[2]}"
new_lines.append(new_line)
else:
new_lines.append(line)
else:
new_lines.append(line)
mermaid_code = "\n".join(new_lines)
# 4) Render the top-centered Mermaid diagram
st.title("Top-Centered Mermaid Diagram with Clickable Links ๐บ")
diagram_html = generate_mermaid_html(mermaid_code)
components.html(diagram_html, height=400, scrolling=True)
# 5) Show what the inbound ?q / ?r was
if current_q:
st.markdown(f"**Detected Query**: `?q={current_q}`")
display_content_or_image(current_q)
if current_r:
st.markdown(f"**Detected Relationship**: `?r={current_r}`")
# 6) Editor Columns: Markdown & Mermaid
left_col, right_col = st.columns(2)
# --- Left: Markdown Editor
with left_col:
st.subheader("Markdown Side ๐")
if "markdown_text" not in st.session_state:
st.session_state["markdown_text"] = "## Hello!\nType some *Markdown* here.\n"
# Text area
markdown_text = st.text_area(
"Edit Markdown:",
value=st.session_state["markdown_text"],
height=300
)
st.session_state["markdown_text"] = markdown_text
# Button row
colA, colB = st.columns(2)
with colA:
if st.button("๐ Refresh Markdown"):
st.write("**Markdown** content refreshed! ๐ฟ")
with colB:
if st.button("โ Clear Markdown"):
st.session_state["markdown_text"] = ""
st.experimental_rerun()
# Display
st.markdown("---")
st.markdown("**Preview:**")
st.markdown(markdown_text)
# --- Right: Mermaid Editor
with right_col:
st.subheader("Mermaid Side ๐งโโ๏ธ")
if "current_mermaid" not in st.session_state:
st.session_state["current_mermaid"] = mermaid_code
mermaid_input = st.text_area(
"Edit Mermaid Code:",
value=st.session_state["current_mermaid"],
height=300
)
colC, colD = st.columns(2)
with colC:
if st.button("๐จ Refresh Diagram"):
# Rebuild the diagram
st.session_state["current_mermaid"] = mermaid_input
st.write("**Mermaid** diagram refreshed! ๐")
st.experimental_rerun()
with colD:
if st.button("โ Clear Mermaid"):
st.session_state["current_mermaid"] = ""
st.experimental_rerun()
st.markdown("---")
st.markdown("**Mermaid Source:**")
st.code(mermaid_input, language="python", line_numbers=True)
# 7) Show Sliders & image/video galleries
st.markdown("---")
st.header("Media Galleries")
num_columns_images = st.slider("Choose Number of Image Columns", 1, 15, 5, key="num_columns_images")
display_images_and_wikipedia_summaries(num_columns_images)
num_columns_video = st.slider("Choose Number of Video Columns", 1, 15, 5, key="num_columns_video")
display_videos_and_links(num_columns_video)
# 8) Optional "Extended" UI
showExtendedTextInterface = False
if showExtendedTextInterface:
display_glossary_grid(roleplaying_glossary)
num_columns_text = st.slider("Choose Number of Text Columns", 1, 15, 4, key="num_columns_text")
display_buttons_with_scores(num_columns_text)
st.markdown("Extended text interface is on...")
# 9) Render the file sidebar
FileSidebar()
# 10) Random Title at bottom
titles = [
"๐ง ๐ญ Semantic Symphonies & Episodic Encores",
"๐๐ผ AI Rhythms of Memory Lane",
"๐ญ๐ Cognitive Crescendos & Neural Harmonies",
"๐ง ๐บ Mnemonic Melodies & Synaptic Grooves",
"๐ผ๐ธ Straight Outta Cognition",
"๐ฅ๐ป Jazzy Jambalaya of AI Memories",
"๐ฐ Semantic Soul & Episodic Essence",
"๐ฅ๐ป The Music Of AI's Mind"
]
selected_title = random.choice(titles)
st.markdown(f"**{selected_title}**")
if __name__ == "__main__":
main()
|