File size: 2,254 Bytes
1a11dee
 
a5cbccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c44ad9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# requirements.txt

streamlit        # Core web app - st.write("Hello"), st.button("Click"), st.selectbox("Choose", opts)
Pillow          # Image tools - Image.open("pic.jpg"), img.resize((100,100)), img.save("out.png") 
plotly          # Plots - px.scatter(df, x="a", y="b"), px.line(df), fig.show()
opencv-python   # Vision - cv2.imread("img.jpg"), cv2.resize(img, (w,h)), cv2.imwrite("out.jpg", img)
moviepy         # Video - VideoFileClip("vid.mp4"), clip.resize(0.5), clip.write_videofile("out.mp4")
python-dotenv   # Env vars - load_dotenv(), os.getenv("KEY"), dotenv_values()
pytz            # Time - timezone('US/Pacific'), dt.astimezone(tz), utc.localize(dt)
requests        # HTTP - requests.get(url), r.json(), r.raise_for_status()
openai          # AI API - client.chat.complete(), client.images.create(), client.audio.transcribe()
beautifulsoup4  # HTML - BeautifulSoup(html), soup.find("div"), soup.find_all("p")
PyPDF2          # PDF - PdfReader("doc.pdf"), reader.pages[0].extract_text(), writer.write(f)
textract        # Extract - process("doc.pdf"), process("doc.docx"), process("text.txt")
gradio-client   # Gradio - client.predict(text), interface.launch(), client.submit(inputs)
huggingface-hub # Models - from_pretrained("model"), list_models(), push_to_hub()
audio-recorder-streamlit # Audio - audio_recorder(), get_audio_data(), save_recording()
xmltodict       # XML - parse(xml_str), unparse(dict_obj), parse(f.read())
mistune         # Markdown - markdown(text), escape(html), renderer.render(tokens)
python-docx     # Word - Document(), doc.add_paragraph(), doc.save("out.docx") 
faiss-cpu       # Vectors - IndexFlatL2(d), index.add(vecs), D,I = index.search(q,k)
scikit-learn    # ML - fit(X,y), predict(X), train_test_split(X,y)
langchain       # LLM - load_chain(), chain.run(input), memory.save_context()
tiktoken        # Tokens - encode(text), decode(tokens), num_tokens = len(tokens)  
anthropic       # Claude - client.messages.create(), client.complete()
edge-tts        # TTS - communicate.run(text), save_to_file(), stream_to_speaker()
streamlit-marquee # Scroll - streamlit_marquee(text), set_speed(), set_style()
extra-streamlit-components>=0.1.60  # Import stx; cookie_mgr=stx.CookieManager(); cookie_mgr.get()