DeepResearchEvaluator / backup10-almostperfect-60seccondtoallaudio20papers-app.py
awacke1's picture
Create backup10-almostperfect-60seccondtoallaudio20papers-app.py
076f5ce verified
raw
history blame
29.3 kB
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
# 🎯 1. Core Configuration & Setup
st.set_page_config(
page_title="🚲TalkingAIResearcher🏆",
page_icon="🚲🏆",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "🚲TalkingAIResearcher🏆"
}
)
load_dotenv()
# Add available English voices for Edge TTS
EDGE_TTS_VOICES = [
"en-US-AriaNeural", # Default voice
"en-US-GuyNeural",
"en-US-JennyNeural",
"en-GB-SoniaNeural",
"en-GB-RyanNeural",
"en-AU-NatashaNeural",
"en-AU-WilliamNeural",
"en-CA-ClaraNeural",
"en-CA-LiamNeural"
]
# Add this to your session state initialization section:
if 'tts_voice' not in st.session_state:
st.session_state['tts_voice'] = EDGE_TTS_VOICES[0] # Default voice
# 🔑 2. API Setup & Clients
openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
xai_key = os.getenv('xai',"")
if 'OPENAI_API_KEY' in st.secrets:
openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
openai.api_key = openai_api_key
claude_client = anthropic.Anthropic(api_key=anthropic_key)
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')
# 📝 3. Session State Management
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
st.session_state['openai_model'] = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
st.session_state['editing_file'] = None
if 'edit_new_name' not in st.session_state:
st.session_state['edit_new_name'] = ""
if 'edit_new_content' not in st.session_state:
st.session_state['edit_new_content'] = ""
if 'viewing_prefix' not in st.session_state:
st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
st.session_state['old_val'] = None
# 🎨 4. Custom CSS
st.markdown("""
<style>
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
.stButton>button {
margin-right: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
FILE_EMOJIS = {
"md": "📝",
"mp3": "🎵",
}
# 🧠 5. High-Information Content Extraction
def get_high_info_terms(text: str) -> list:
"""Extract high-information terms from text, including key phrases."""
stop_words = set([
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',
'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were',
'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would',
'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these',
'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who',
'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there'
])
key_phrases = [
'artificial intelligence', 'machine learning', 'deep learning', 'neural network',
'personal assistant', 'natural language', 'computer vision', 'data science',
'reinforcement learning', 'knowledge graph', 'semantic search', 'time series',
'large language model', 'transformer model', 'attention mechanism',
'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology',
'cognitive science', 'human computer', 'decision making', 'arxiv search',
'research paper', 'scientific study', 'empirical analysis'
]
# Identify key phrases
#preserved_phrases = []
#lower_text = text.lower()
#for phrase in key_phrases:
# if phrase in lower_text:
# preserved_phrases.append(phrase)
# text = text.replace(phrase, '')
# Extract individual words
words = re.findall(r'\b\w+(?:-\w+)*\b', text)
high_info_words = [
word.lower() for word in words
if len(word) > 3
and word.lower() not in stop_words
and not word.isdigit()
and any(c.isalpha() for c in word)
]
#all_terms = preserved_phrases + high_info_words
all_terms = high_info_words
seen = set()
unique_terms = []
for term in all_terms:
if term not in seen:
seen.add(term)
unique_terms.append(term)
max_terms = 5
return unique_terms[:max_terms]
def clean_text_for_filename(text: str) -> str:
"""Remove punctuation and short filler words, return a compact string."""
text = text.lower()
text = re.sub(r'[^\w\s-]', '', text)
words = text.split()
stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about'])
filtered = [w for w in words if len(w)>3 and w not in stop_short]
return '_'.join(filtered)[:200]
# 📁 6. File Operations
def generate_filename(prompt, response, file_type="md"):
"""
Generate filename with meaningful terms and short dense clips from prompt & response.
The filename should be about 150 chars total, include high-info terms, and a clipped snippet.
"""
prefix = datetime.now().strftime("%y%m_%H%M") + "_"
combined = (prompt + " " + response).strip()
info_terms = get_high_info_terms(combined)
# Include a short snippet from prompt and response
snippet = (prompt[:100] + " " + response[:100]).strip()
snippet_cleaned = clean_text_for_filename(snippet)
# Combine info terms and snippet
name_parts = info_terms + [snippet_cleaned]
full_name = '_'.join(name_parts)
# Trim to ~150 chars
if len(full_name) > 150:
full_name = full_name[:150]
filename = f"{prefix}{full_name}.{file_type}"
return filename
def create_file(prompt, response, file_type="md"):
"""Create file with intelligent naming"""
filename = generate_filename(prompt.strip(), response.strip(), file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt + "\n\n" + response)
return filename
def get_download_link(file):
"""Generate download link for file"""
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>'
# 🔊 7. Audio Processing
def clean_for_speech(text: str) -> str:
"""Clean text for speech synthesis"""
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
@st.cache_resource
def speech_synthesis_html(result):
"""Create HTML for speech synthesis"""
html_code = f"""
<html><body>
<script>
var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
window.speechSynthesis.speak(msg);
</script>
</body></html>
"""
components.html(html_code, height=0)
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
"""Generate audio using Edge TTS"""
text = clean_for_speech(text)
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = generate_filename(text, text, "mp3")
await communicate.save(out_fn)
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
"""Wrapper for edge TTS generation"""
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
def play_and_download_audio(file_path):
"""Play and provide download link for audio"""
if file_path and os.path.exists(file_path):
st.audio(file_path)
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
st.markdown(dl_link, unsafe_allow_html=True)
# 🎬 8. Media Processing
def process_image(image_path, user_prompt):
"""Process image with GPT-4V"""
with open(image_path, "rb") as imgf:
image_data = imgf.read()
b64img = base64.b64encode(image_data).decode("utf-8")
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
]}
],
temperature=0.0,
)
return resp.choices[0].message.content
def process_audio(audio_path):
"""Process audio with Whisper"""
with open(audio_path, "rb") as f:
transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
st.session_state.messages.append({"role": "user", "content": transcription.text})
return transcription.text
def process_video(video_path, seconds_per_frame=1):
"""Extract frames from video"""
vid = cv2.VideoCapture(video_path)
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vid.get(cv2.CAP_PROP_FPS)
skip = int(fps*seconds_per_frame)
frames_b64 = []
for i in range(0, total, skip):
vid.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = vid.read()
if not ret:
break
_, buf = cv2.imencode(".jpg", frame)
frames_b64.append(base64.b64encode(buf).decode("utf-8"))
vid.release()
return frames_b64
def process_video_with_gpt(video_path, prompt):
"""Analyze video frames with GPT-4V"""
frames = process_video(video_path)
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role":"system","content":"Analyze video frames."},
{"role":"user","content":[
{"type":"text","text":prompt},
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
]}
]
)
return resp.choices[0].message.content
# 🤖 9. AI Model Integration
def save_full_transcript(query, text):
"""Save full transcript of Arxiv results as a file."""
create_file(query, text, "md")
def parse_arxiv_refs(ref_text: str):
"""
Parse papers by finding lines with two pipe characters as title lines.
Returns list of paper dictionaries with audio files.
"""
if not ref_text:
return []
results = []
current_paper = {}
lines = ref_text.split('\n')
for i, line in enumerate(lines):
# Check if this is a title line (contains exactly 2 pipe characters)
if line.count('|') == 2:
# If we have a previous paper, add it to results
if current_paper:
results.append(current_paper)
if len(results) >= 20: # Limit to 20 papers
break
# Parse new paper header
try:
# Remove ** and split by |
header_parts = line.strip('* ').split('|')
date = header_parts[0].strip()
title = header_parts[1].strip()
# Extract arXiv URL if present
url_match = re.search(r'(https://arxiv.org/\S+)', line)
url = url_match.group(1) if url_match else f"paper_{len(results)}"
current_paper = {
'date': date,
'title': title,
'url': url,
'authors': '',
'summary': '',
'content_start': i + 1 # Track where content begins
}
except Exception as e:
st.warning(f"Error parsing paper header: {str(e)}")
current_paper = {}
continue
# If we have a current paper and this isn't a title line, add to content
elif current_paper:
if not current_paper['authors']: # First line after title is authors
current_paper['authors'] = line.strip('* ')
else: # Rest is summary
if current_paper['summary']:
current_paper['summary'] += ' ' + line.strip()
else:
current_paper['summary'] = line.strip()
# Don't forget the last paper
if current_paper:
results.append(current_paper)
return results[:20] # Ensure we return maximum 20 papers
def create_paper_audio_files(papers):
"""
Create audio files for each paper's content and add file paths to paper dict.
Only generates full audio file since it includes the title.
"""
for paper in papers:
try:
# Generate audio for full content only
full_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}"
full_text = clean_for_speech(full_text)
full_file = speak_with_edge_tts(full_text, voice=st.session_state['tts_voice'])
paper['full_audio'] = full_file
except Exception as e:
st.warning(f"Error generating audio for paper {paper['title']}: {str(e)}")
paper['full_audio'] = None
def display_papers(papers):
"""
Display papers with their audio controls using URLs as unique keys.
"""
st.write("## Research Papers")
for idx, paper in enumerate(papers):
with st.expander(f"📄 {paper['title']}", expanded=True):
st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
st.markdown(f"*{paper['authors']}*")
st.markdown(paper['summary'])
# Single audio control for full content
if paper.get('full_audio'):
st.write("📚 Paper Audio")
st.audio(paper['full_audio'])
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
titles_summary=True, full_audio=False):
"""Perform Arxiv search with audio generation per paper."""
start = time.time()
# Query the HF RAG pipeline
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = client.predict(q, 20, "Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md")[0]
r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1",
True, api_name="/ask_llm")
# Combine for final text output
result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
st.markdown(result)
# Parse and process papers
papers = parse_arxiv_refs(refs)
if papers:
create_paper_audio_files(papers)
display_papers(papers)
else:
st.warning("No papers found in the response.")
elapsed = time.time()-start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
# Save full transcript
create_file(q, result, "md")
return result
def process_with_gpt(text):
"""Process text with GPT-4"""
if not text:
return
st.session_state.messages.append({"role":"user","content":text})
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
c = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=st.session_state.messages,
stream=False
)
ans = c.choices[0].message.content
st.write("GPT-4o: " + ans)
create_file(text, ans, "md")
st.session_state.messages.append({"role":"assistant","content":ans})
return ans
def process_with_claude(text):
"""Process text with Claude"""
if not text:
return
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
r = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role":"user","content":text}]
)
ans = r.content[0].text
st.write("Claude-3.5: " + ans)
create_file(text, ans, "md")
st.session_state.chat_history.append({"user":text,"claude":ans})
return ans
# 📂 10. File Management
def create_zip_of_files(md_files, mp3_files):
"""Create zip with intelligent naming"""
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
if not all_files:
return None
# Collect content for high-info term extraction
all_content = []
for f in all_files:
if f.endswith('.md'):
with open(f, 'r', encoding='utf-8') as file:
all_content.append(file.read())
elif f.endswith('.mp3'):
all_content.append(os.path.basename(f))
combined_content = " ".join(all_content)
info_terms = get_high_info_terms(combined_content)
timestamp = datetime.now().strftime("%y%m_%H%M")
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3])
zip_name = f"{timestamp}_{name_text}.zip"
with zipfile.ZipFile(zip_name,'w') as z:
for f in all_files:
z.write(f)
return zip_name
def load_files_for_sidebar():
"""Load and group files for sidebar display"""
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
groups = defaultdict(list)
for f in all_files:
fname = os.path.basename(f)
prefix = fname[:10]
groups[prefix].append(f)
for prefix in groups:
groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)
sorted_prefixes = sorted(groups.keys(),
key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]),
reverse=True)
return groups, sorted_prefixes
def extract_keywords_from_md(files):
"""Extract keywords from markdown files"""
text = ""
for f in files:
if f.endswith(".md"):
c = open(f,'r',encoding='utf-8').read()
text += " " + c
return get_high_info_terms(text)
def display_file_manager_sidebar(groups, sorted_prefixes):
"""Display file manager in sidebar"""
st.sidebar.title("🎵 Audio & Docs Manager")
all_md = []
all_mp3 = []
for prefix in groups:
for f in groups[prefix]:
if f.endswith(".md"):
all_md.append(f)
elif f.endswith(".mp3"):
all_mp3.append(f)
top_bar = st.sidebar.columns(3)
with top_bar[0]:
if st.button("🗑 DelAllMD"):
for f in all_md:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[1]:
if st.button("🗑 DelAllMP3"):
for f in all_mp3:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[2]:
if st.button("⬇️ ZipAll"):
z = create_zip_of_files(all_md, all_mp3)
if z:
st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True)
for prefix in sorted_prefixes:
files = groups[prefix]
kw = extract_keywords_from_md(files)
keywords_str = " ".join(kw) if kw else "No Keywords"
with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True):
c1,c2 = st.columns(2)
with c1:
if st.button("👀ViewGrp", key="view_group_"+prefix):
st.session_state.viewing_prefix = prefix
with c2:
if st.button("🗑DelGrp", key="del_group_"+prefix):
for f in files:
os.remove(f)
st.success(f"Deleted group {prefix}!")
st.session_state.should_rerun = True
for f in files:
fname = os.path.basename(f)
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
st.write(f"**{fname}** - {ctime}")
# 🎯 11. Main Application
def main():
st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research")
# Add voice selector to sidebar
st.sidebar.markdown("### 🎤 Voice Settings")
selected_voice = st.sidebar.selectbox(
"Select TTS Voice:",
options=EDGE_TTS_VOICES,
index=EDGE_TTS_VOICES.index(st.session_state['tts_voice'])
)
# Update session state if voice changes
if selected_voice != st.session_state['tts_voice']:
st.session_state['tts_voice'] = selected_voice
st.rerun()
tab_main = st.radio("Action:",["🎤 Voice","📸 Media","🔍 ArXiv","📝 Editor"],horizontal=True)
mycomponent = components.declare_component("mycomponent", path="mycomponent")
val = mycomponent(my_input_value="Hello")
# Show input in a text box for editing if detected
if val:
val_stripped = val.replace('\\n', ' ')
edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)
#edited_input = edited_input.replace('\n', ' ')
run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"])
col1, col2 = st.columns(2)
with col1:
autorun = st.checkbox("⚙ AutoRun", value=True)
with col2:
full_audio = st.checkbox("📚FullAudio", value=False,
help="Generate full audio response")
input_changed = (val != st.session_state.old_val)
if autorun and input_changed:
st.session_state.old_val = val
if run_option == "Arxiv":
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
titles_summary=True, full_audio=full_audio)
else:
if run_option == "GPT-4o":
process_with_gpt(edited_input)
elif run_option == "Claude-3.5":
process_with_claude(edited_input)
else:
if st.button("▶ Run"):
st.session_state.old_val = val
if run_option == "Arxiv":
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
titles_summary=True, full_audio=full_audio)
else:
if run_option == "GPT-4o":
process_with_gpt(edited_input)
elif run_option == "Claude-3.5":
process_with_claude(edited_input)
if tab_main == "🔍 ArXiv":
st.subheader("🔍 Query ArXiv")
q = st.text_input("🔍 Query:")
st.markdown("### 🎛 Options")
vocal_summary = st.checkbox("🎙ShortAudio", value=True)
extended_refs = st.checkbox("📜LongRefs", value=False)
titles_summary = st.checkbox("🔖TitlesOnly", value=True)
full_audio = st.checkbox("📚FullAudio", value=False,
help="Full audio of results")
full_transcript = st.checkbox("🧾FullTranscript", value=False,
help="Generate a full transcript file")
if q and st.button("🔍Run"):
result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs,
titles_summary=titles_summary, full_audio=full_audio)
if full_transcript:
save_full_transcript(q, result)
st.markdown("### Change Prompt & Re-Run")
q_new = st.text_input("🔄 Modify Query:")
if q_new and st.button("🔄 Re-Run with Modified Query"):
result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs,
titles_summary=titles_summary, full_audio=full_audio)
if full_transcript:
save_full_transcript(q_new, result)
elif tab_main == "🎤 Voice":
st.subheader("🎤 Voice Input")
user_text = st.text_area("💬 Message:", height=100)
user_text = user_text.strip().replace('\n', ' ')
if st.button("📨 Send"):
process_with_gpt(user_text)
st.subheader("📜 Chat History")
t1,t2=st.tabs(["Claude History","GPT-4o History"])
with t1:
for c in st.session_state.chat_history:
st.write("**You:**", c["user"])
st.write("**Claude:**", c["claude"])
with t2:
for m in st.session_state.messages:
with st.chat_message(m["role"]):
st.markdown(m["content"])
elif tab_main == "📸 Media":
st.header("📸 Images & 🎥 Videos")
tabs = st.tabs(["🖼 Images", "🎥 Video"])
with tabs[0]:
imgs = glob.glob("*.png")+glob.glob("*.jpg")
if imgs:
c = st.slider("Cols",1,5,3)
cols = st.columns(c)
for i,f in enumerate(imgs):
with cols[i%c]:
st.image(Image.open(f),use_container_width=True)
if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
a = process_image(f,"Describe this image.")
st.markdown(a)
else:
st.write("No images found.")
with tabs[1]:
vids = glob.glob("*.mp4")
if vids:
for v in vids:
with st.expander(f"🎥 {os.path.basename(v)}"):
st.video(v)
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
a = process_video_with_gpt(v,"Describe video.")
st.markdown(a)
else:
st.write("No videos found.")
elif tab_main == "📝 Editor":
if getattr(st.session_state,'current_file',None):
st.subheader(f"Editing: {st.session_state.current_file}")
new_text = st.text_area("✏️ Content:", st.session_state.file_content, height=300)
if st.button("💾 Save"):
with open(st.session_state.current_file,'w',encoding='utf-8') as f:
f.write(new_text)
st.success("Updated!")
st.session_state.should_rerun = True
else:
st.write("Select a file from the sidebar to edit.")
groups, sorted_prefixes = load_files_for_sidebar()
display_file_manager_sidebar(groups, sorted_prefixes)
if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
st.write("---")
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
for f in groups[st.session_state.viewing_prefix]:
fname = os.path.basename(f)
ext = os.path.splitext(fname)[1].lower().strip('.')
st.write(f"### {fname}")
if ext == "md":
content = open(f,'r',encoding='utf-8').read()
st.markdown(content)
elif ext == "mp3":
st.audio(f)
else:
st.markdown(get_download_link(f), unsafe_allow_html=True)
if st.button("❌ Close"):
st.session_state.viewing_prefix = None
if st.session_state.should_rerun:
st.session_state.should_rerun = False
st.rerun()
if __name__=="__main__":
main()