DeepResearchEvaluator / backup4.app.py
awacke1's picture
Rename app.py to backup4.app.py
1a6391f verified
raw
history blame
22.8 kB
#!/usr/bin/env python3
import os
import re
import glob
import json
import base64
import zipfile
import random
import requests
import openai
from PIL import Image
from urllib.parse import quote
import streamlit as st
import streamlit.components.v1 as components
# If you do model inference via huggingface_hub:
# from huggingface_hub import InferenceClient
########################################################################################
# 1) GLOBAL CONFIG & PLACEHOLDERS
########################################################################################
BASE_URL = "https://huggingface.co/spaces/awacke1/MermaidMarkdownDiagramEditor"
PromptPrefix = "AI-Search: "
PromptPrefix2 = "AI-Refine: "
PromptPrefix3 = "AI-JS: "
roleplaying_glossary = {
"Core Rulebooks": {
"Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"],
"GURPS": ["Basic Set Characters", "Basic Set Campaigns"]
},
"Campaigns & Adventures": {
"Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"]
}
}
transhuman_glossary = {
"Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"],
"Cybernetics": ["Robotic Limbs", "Augmented Eyes"],
}
def process_text(text):
"""🕵️ process_text: detective style—prints lines to Streamlit for debugging."""
st.write(f"process_text called with: {text}")
def search_arxiv(text):
"""🔭 search_arxiv: pretend to search ArXiv, just prints debug."""
st.write(f"search_arxiv called with: {text}")
def SpeechSynthesis(text):
"""🗣 Simple logging for text-to-speech placeholders."""
st.write(f"SpeechSynthesis called with: {text}")
def process_image(image_file, prompt):
"""📷 Simple placeholder for image AI pipeline."""
return f"[process_image placeholder] {image_file} => {prompt}"
def process_video(video_file, seconds_per_frame):
"""🎞 Simple placeholder for video AI pipeline."""
st.write(f"[process_video placeholder] {video_file}, {seconds_per_frame} sec/frame")
API_URL = "https://huggingface-inference-endpoint-placeholder"
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
@st.cache_resource
def InferenceLLM(prompt):
"""🔮 Stub returning mock response for 'prompt'."""
return f"[InferenceLLM placeholder response to prompt: {prompt}]"
########################################################################################
# 2) GLOSSARY & FILE UTILITY
########################################################################################
@st.cache_resource
def display_glossary_entity(k):
"""
Creates multiple link emojis for a single entity.
Each link might point to /?q=..., /?q=<prefix>..., or external sites.
"""
search_urls = {
"🚀🌌ArXiv": lambda x: f"/?q={quote(x)}",
"🃏Analyst": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix)}",
"📚PyCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix2)}",
"🔬JSCoder": lambda x: f"/?q={quote(x)}-{quote(PromptPrefix3)}",
"📖": lambda x: f"https://en.wikipedia.org/wiki/{quote(x)}",
"🔍": lambda x: f"https://www.google.com/search?q={quote(x)}",
"🔎": lambda x: f"https://www.bing.com/search?q={quote(x)}",
"🎥": lambda x: f"https://www.youtube.com/results?search_query={quote(x)}",
"🐦": lambda x: f"https://twitter.com/search?q={quote(x)}",
}
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)
def display_content_or_image(query):
"""
If 'query' is in transhuman_glossary or there's an image matching 'images/<query>.png',
show it. Otherwise warn.
"""
for category, term_list in transhuman_glossary.items():
for term in term_list:
if query.lower() in term.lower():
st.subheader(f"Found in {category}:")
st.write(term)
return True
image_path = f"images/{query}.png"
if os.path.exists(image_path):
st.image(image_path, caption=f"Image for {query}")
return True
st.warning("No matching content or image found.")
return False
def clear_query_params():
"""Warn about clearing. Full clearing requires a redirect or st.experimental_set_query_params()."""
st.warning("Define a redirect or link without query params if you want to truly clear them.")
########################################################################################
# 3) FILE-HANDLING (MD files, etc.)
########################################################################################
def load_file(file_path):
"""Load file contents as UTF-8 text, or return empty on error."""
try:
with open(file_path, "r", encoding='utf-8') as f:
return f.read()
except:
return ""
@st.cache_resource
def create_zip_of_files(files):
"""Combine multiple local .md files into a single .zip for user to download."""
zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
@st.cache_resource
def get_zip_download_link(zip_file):
"""Return an <a> link to download the given zip_file (base64-encoded)."""
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
def get_table_download_link(file_path):
"""
Creates a download link for a single file from your snippet.
Encodes it as base64 data.
"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1]
mime_map = {
'.txt': 'text/plain',
'.py': 'text/plain',
'.xlsx': 'text/plain',
'.csv': 'text/plain',
'.htm': 'text/html',
'.md': 'text/markdown',
'.wav': 'audio/wav'
}
mime_type = mime_map.get(ext, 'application/octet-stream')
return f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
except:
return ''
def get_file_size(file_path):
"""Get file size in bytes."""
return os.path.getsize(file_path)
def FileSidebar():
"""
Renders .md files, providing open/view/delete/run logic in the sidebar.
"""
all_files = glob.glob("*.md")
# Exclude short-named or special files if needed:
all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5]
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
Files1, Files2 = st.sidebar.columns(2)
with Files1:
if st.button("🗑 Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
with Files2:
if st.button("⬇️ Download"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
file_contents = ''
file_name = ''
next_action = ''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])
with col1:
if st.button("🌐", key="md_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'md'
st.session_state['next_action'] = next_action
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("📂", key="open_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'open'
st.session_state['lastfilename'] = file
st.session_state['filename'] = file
st.session_state['filetext'] = file_contents
st.session_state['next_action'] = next_action
with col4:
if st.button("▶️", key="read_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'search'
st.session_state['next_action'] = next_action
with col5:
if st.button("🗑", key="delete_"+file):
os.remove(file)
st.rerun()
if file_contents:
if next_action == 'open':
open1, open2 = st.columns([0.8,0.2])
with open1:
file_name_input = st.text_input('File Name:', file_name, key='file_name_input')
file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area')
if st.button('💾 Save File'):
with open(file_name_input, 'w', encoding='utf-8') as f:
f.write(file_content_area)
st.markdown(f'Saved {file_name_input} successfully.')
elif next_action == 'search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
user_prompt = PromptPrefix2 + file_contents
st.markdown(user_prompt)
if st.button('🔍Re-Code'):
search_arxiv(file_contents)
elif next_action == 'md':
st.markdown(file_contents)
SpeechSynthesis(file_contents)
if st.button("🔍Run"):
st.write("Running GPT logic placeholder...")
########################################################################################
# 4) SCORING / GLOSSARIES
########################################################################################
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)
def generate_key(label, header, idx):
return f"{header}_{label}_{idx}_key"
def update_score(key, increment=1):
"""
Track a 'score' for each glossary item or term, saved in JSON per key.
"""
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
else:
score_data = {"clicks": 0, "score": 0}
score_data["clicks"] += increment
score_data["score"] += increment
with open(score_file, "w") as file:
json.dump(score_data, file)
return score_data["score"]
def load_score(key):
file_path = os.path.join(score_dir, f"{key}.json")
if os.path.exists(file_path):
with open(file_path, "r") as file:
score_data = json.load(file)
return score_data["score"]
return 0
def display_buttons_with_scores(num_columns_text):
"""
Show glossary items as clickable buttons that increment a 'score'.
"""
game_emojis = {
"Dungeons and Dragons": "🐉",
"Call of Cthulhu": "🐙",
"GURPS": "🎲",
"Pathfinder": "🗺️",
"Kindred of the East": "🌅",
"Changeling": "🍃",
}
topic_emojis = {
"Core Rulebooks": "📚",
"Maps & Settings": "🗺️",
"Game Mechanics & Tools": "⚙️",
"Monsters & Adversaries": "👹",
"Campaigns & Adventures": "📜",
"Creatives & Assets": "🎨",
"Game Master Resources": "🛠️",
"Lore & Background": "📖",
"Character Development": "🧍",
"Homebrew Content": "🔧",
"General Topics": "🌍",
}
for category, games in roleplaying_glossary.items():
category_emoji = topic_emojis.get(category, "🔍")
st.markdown(f"## {category_emoji} {category}")
for game, terms in games.items():
game_emoji = game_emojis.get(game, "🎮")
for term in terms:
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
score_val = load_score(key)
if st.button(f"{game_emoji} {category} {game} {term} {score_val}", key=key):
newscore = update_score(key.replace('?', ''))
st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}")
########################################################################################
# 5) IMAGES & VIDEOS
########################################################################################
def display_images_and_wikipedia_summaries(num_columns=4):
"""Display .png images in a grid, referencing the name as a 'keyword'."""
image_files = [f for f in os.listdir('.') if f.endswith('.png')]
if not image_files:
st.write("No PNG images found in the current directory.")
return
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for image_file in image_files_sorted:
with cols[col_index % num_columns]:
try:
image = Image.open(image_file)
st.image(image, use_column_width=True)
k = image_file.split('.')[0]
display_glossary_entity(k)
image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}")
if image_text_input:
response = process_image(image_file, image_text_input)
st.markdown(response)
except:
st.write(f"Could not open {image_file}")
col_index += 1
def display_videos_and_links(num_columns=4):
"""Displays all .mp4/.webm in a grid, plus text input for prompts."""
video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))]
if not video_files:
st.write("No MP4 or WEBM videos found in the current directory.")
return
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for video_file in video_files_sorted:
with cols[col_index % num_columns]:
k = video_file.split('.')[0]
st.video(video_file, format='video/mp4', start_time=0)
display_glossary_entity(k)
video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}")
if video_text_input:
try:
seconds_per_frame = 10
process_video(video_file, seconds_per_frame)
except ValueError:
st.error("Invalid input for seconds per frame!")
col_index += 1
########################################################################################
# 6) MERMAID
########################################################################################
def generate_mermaid_html(mermaid_code: str) -> str:
"""
Returns HTML that centers the Mermaid diagram, loading from a CDN.
"""
return f"""
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
<style>
.centered-mermaid {{
display: flex;
justify-content: center;
margin: 20px auto;
}}
.mermaid {{
max-width: 800px;
}}
</style>
</head>
<body>
<div class="mermaid centered-mermaid">
{mermaid_code}
</div>
<script>
mermaid.initialize({{ startOnLoad: true }});
</script>
</body>
</html>
"""
def append_model_param(url: str, model_selected: bool) -> str:
"""
If user checks 'Append ?model=1', we append &model=1 or ?model=1 if not present.
"""
if not model_selected:
return url
delimiter = "&" if "?" in url else "?"
return f"{url}{delimiter}model=1"
def inject_base_url(url: str) -> str:
"""
If a link does not start with http, prepend your BASE_URL
so it becomes an absolute link to huggingface.co/spaces/...
"""
if url.startswith("http"):
return url
return f"{BASE_URL}{url}"
DEFAULT_MERMAID = r"""
flowchart LR
U((User 😎)) -- "Talk 🗣️" --> LLM[LLM Agent 🤖\nExtract Info]
click U "?q=User%20😎" _self
click LLM "?q=LLM%20Agent%20Extract%20Info" _blank
LLM -- "Query 🔍" --> HS[Hybrid Search 🔎\nVector+NER+Lexical]
click HS "?q=Hybrid%20Search%20Vector+NER+Lexical" _blank
HS -- "Reason 🤔" --> RE[Reasoning Engine 🛠️\nNeuralNetwork+Medical]
click RE "?q=Reasoning%20Engine%20NeuralNetwork+Medical" _blank
RE -- "Link 📡" --> KG((Knowledge Graph 📚\nOntology+GAR+RAG))
click KG "?q=Knowledge%20Graph%20Ontology+GAR+RAG" _blank
"""
########################################################################################
# 7) MAIN UI
########################################################################################
def main():
st.set_page_config(page_title="Mermaid + Clickable Links with Base URL", layout="wide")
# 1) Query Param Parsing
query_params = st.query_params
q_list = (query_params.get('q') or query_params.get('query') or [''])
if q_list:
q_val = q_list[0].strip()
if q_val:
# If there's a q= or query= param, do some processing
search_payload = PromptPrefix + q_val
st.markdown(search_payload)
process_text(search_payload)
# If 'action' param is present
if 'action' in query_params:
action_list = query_params['action']
if action_list:
action = action_list[0]
if action == 'show_message':
st.success("Showing a message because 'action=show_message' was found in the URL.")
elif action == 'clear':
clear_query_params()
# If a 'query=' param is present, show content or image
if 'query' in query_params:
paramQ = query_params['query'][0]
display_content_or_image(paramQ)
# 2) Let user pick if we want ?model=1
st.sidebar.write("## Diagram Link Settings")
model_selected = st.sidebar.checkbox("Append ?model=1 to each link?")
# 3) We'll do minimal injection for the "click" lines
lines = DEFAULT_MERMAID.strip().split("\n")
new_lines = []
for line in lines:
if line.strip().startswith("click ") and '"/?' in line:
# e.g. click U "/?q=User%20😎" _self
pattern = r'(click\s+\S+\s+)"([^"]+)"\s+(\S+)'
match = re.match(pattern, line.strip())
if match:
prefix_part = match.group(1) # e.g. "click U "
old_url = match.group(2) # e.g. /?q=User%20😎
target = match.group(3) # e.g. _self or _blank
new_url = inject_base_url(old_url)
new_url = append_model_param(new_url, model_selected)
new_line = f'{prefix_part}"{new_url}" {target}'
new_lines.append(new_line)
else:
# If not matched, keep line as is
new_lines.append(line)
else:
new_lines.append(line)
final_mermaid = "\n".join(new_lines)
# 4) Render the top-centered Mermaid diagram
st.sidebar.markdown("**Mermaid Diagram** with Base URL Injection")
diagram_html = generate_mermaid_html(final_mermaid)
components.html(diagram_html, height=400, scrolling=True)
# 5) Two-column layout: Markdown & Mermaid Editors
left_col, right_col = st.columns(2)
with left_col:
st.subheader("Markdown Side 📝")
if "markdown_text" not in st.session_state:
st.session_state["markdown_text"] = "## Hello!\nYou can type some *Markdown* here.\n"
markdown_text = st.text_area(
"Edit Markdown:",
value=st.session_state["markdown_text"],
height=300
)
st.session_state["markdown_text"] = markdown_text
# Row of buttons
colA, colB = st.columns(2)
with colA:
if st.button("🔄 Refresh Markdown"):
st.write("**Markdown** content refreshed! 🍿")
with colB:
if st.button("❌ Clear Markdown"):
st.session_state["markdown_text"] = ""
st.rerun()
st.markdown("---")
st.markdown("**Preview:**")
st.markdown(markdown_text)
with right_col:
st.subheader("Mermaid Side 🧜‍♂️")
if "current_mermaid" not in st.session_state:
st.session_state["current_mermaid"] = final_mermaid
mermaid_input = st.text_area(
"Edit Mermaid Code:",
value=st.session_state["current_mermaid"],
height=300
)
colC, colD = st.columns(2)
with colC:
if st.button("🎨 Refresh Diagram"):
st.session_state["current_mermaid"] = mermaid_input
st.write("**Mermaid** diagram refreshed! 🌈")
st.rerun()
with colD:
if st.button("❌ Clear Mermaid"):
st.session_state["current_mermaid"] = ""
st.rerun()
st.markdown("---")
st.markdown("**Mermaid Source:**")
st.code(mermaid_input, language="python", line_numbers=True)
# 6) Media Galleries
st.markdown("---")
st.header("Media Galleries")
num_columns_images = st.slider("Choose Number of Image Columns", 1, 15, 5, key="num_columns_images")
display_images_and_wikipedia_summaries(num_columns_images)
num_columns_video = st.slider("Choose Number of Video Columns", 1, 15, 5, key="num_columns_video")
display_videos_and_links(num_columns_video)
# 7) Optional Extended text interface
showExtendedTextInterface = False
if showExtendedTextInterface:
# e.g. display_glossary_grid(roleplaying_glossary)
# num_columns_text = st.slider("Choose Number of Text Columns", 1, 15, 4)
# display_buttons_with_scores(num_columns_text)
pass
# 8) File Sidebar
FileSidebar()
# 9) Random Title
titles = [
"🧠🎭 Semantic Symphonies & Episodic Encores",
"🌌🎼 AI Rhythms of Memory Lane",
"🎭🎉 Cognitive Crescendos & Neural Harmonies",
"🧠🎺 Mnemonic Melodies & Synaptic Grooves",
"🎼🎸 Straight Outta Cognition",
"🥁🎻 Jazzy Jambalaya of AI Memories",
"🏰 Semantic Soul & Episodic Essence",
"🥁🎻 The Music Of AI's Mind"
]
st.markdown(f"**{random.choice(titles)}**")
if __name__ == "__main__":
main()