awacke1's picture
Create app.py
20fc1c2 verified
raw
history blame
23.8 kB
#!/usr/bin/env python3
import os
import re
import glob
import json
import base64
import zipfile
import random
import requests
import openai
from PIL import Image
from urllib.parse import quote
import streamlit as st
import streamlit.components.v1 as components
# For demonstration, we'll import from huggingface_hub
from huggingface_hub import InferenceClient
# -----------------------------------------------------
# 1) Ensure our default MarkdownCode.md and MermaidCode.md exist
# If not, create them and restart.
# -----------------------------------------------------
if not os.path.exists("MarkdownCode.md"):
with open("MarkdownCode.md", 'w', encoding='utf-8') as f:
f.write("# Default Markdown\nThis is a default Markdown file.")
st.experimental_rerun()
if not os.path.exists("MermaidCode.md"):
with open("MermaidCode.md", 'w', encoding='utf-8') as f:
f.write("""# Default Mermaid
flowchart LR
A[Default] --> B[Example]
click A "/?q=Default" _self
click B "/?q=Example" _self
""")
st.experimental_rerun()
# ----------------------------
# Placeholder data structures
# ----------------------------
PromptPrefix = "AI-Search: "
PromptPrefix2 = "AI-Refine: "
PromptPrefix3 = "AI-JS: "
roleplaying_glossary = {
"Core Rulebooks": {
"Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"],
"GURPS": ["Basic Set Characters", "Basic Set Campaigns"]
},
"Campaigns & Adventures": {
"Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"]
}
}
transhuman_glossary = {
"Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"],
"Cybernetics": ["Robotic Limbs", "Augmented Eyes"],
}
# ------------
# Stub Methods
# ------------
def process_text(text):
st.write(f"process_text called with: {text}")
def process_text2(text_input):
return f"[process_text2 placeholder] Received: {text_input}"
def search_arxiv(text):
st.write(f"search_arxiv called with: {text}")
def SpeechSynthesis(text):
st.write(f"SpeechSynthesis called with: {text}")
def process_image(image_file, prompt):
return f"[process_image placeholder] Processing {image_file} with prompt: {prompt}"
def process_video(video_file, seconds_per_frame):
st.write(f"[process_video placeholder] Video: {video_file}, seconds/frame: {seconds_per_frame}")
def search_glossary(content):
st.write(f"search_glossary called with: {content}")
API_URL = "https://huggingface-inference-endpoint-placeholder"
API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
@st.cache_resource
def InferenceLLM(prompt):
return f"[InferenceLLM placeholder response to prompt: {prompt}]"
# --------------------------------------
# Display Entities & Glossary Functions
# --------------------------------------
@st.cache_resource
def display_glossary_entity(k):
search_urls = {
"๐Ÿš€๐ŸŒŒArXiv": lambda k: f"/?q={quote(k)}",
"๐ŸƒAnalyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}",
"๐Ÿ“šPyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}",
"๐Ÿ”ฌJSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}",
"๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}",
"๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"๐ŸŽฅ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()])
st.markdown(f"**{k}** <small>{links_md}</small>", unsafe_allow_html=True)
@st.cache_resource
def display_glossary_grid(roleplaying_glossary):
search_urls = {
"๐Ÿš€๐ŸŒŒArXiv": lambda k: f"/?q={quote(k)}",
"๐ŸƒAnalyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}",
"๐Ÿ“šPyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}",
"๐Ÿ”ฌJSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}",
"๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}",
"๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}",
"๐ŸŽฅ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}",
"๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}",
}
for category, details in roleplaying_glossary.items():
st.write(f"### {category}")
cols = st.columns(len(details))
for idx, (game, terms) in enumerate(details.items()):
with cols[idx]:
st.markdown(f"#### {game}")
for term in terms:
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
st.markdown(f"**{term}** <small>{links_md}</small>", unsafe_allow_html=True)
# --------------------
# File-Handling Logic
# --------------------
def load_file(file_path):
try:
with open(file_path, "r", encoding='utf-8') as f:
return f.read()
except:
return ""
@st.cache_resource
def create_zip_of_files(files):
zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
@st.cache_resource
def get_zip_download_link(zip_file):
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
return href
def get_table_download_link(file_path):
try:
with open(file_path, 'r', encoding='utf-8') as file:
data = file.read()
b64 = base64.b64encode(data.encode()).decode()
file_name = os.path.basename(file_path)
ext = os.path.splitext(file_name)[1]
mime_map = {
'.txt': 'text/plain',
'.py': 'text/plain',
'.xlsx': 'text/plain',
'.csv': 'text/plain',
'.htm': 'text/html',
'.md': 'text/markdown',
'.wav': 'audio/wav'
}
mime_type = mime_map.get(ext, 'application/octet-stream')
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
return href
except:
return ''
def get_file_size(file_path):
return os.path.getsize(file_path)
def compare_and_delete_files(files):
if not files:
st.warning("No files to compare.")
return
file_sizes = {}
for file in files:
size = os.path.getsize(file)
file_sizes.setdefault(size, []).append(file)
for size, paths in file_sizes.items():
if len(paths) > 1:
latest_file = max(paths, key=os.path.getmtime)
for file in paths:
if file != latest_file:
os.remove(file)
st.success(f"Deleted {file} as a duplicate.")
st.rerun()
def FileSidebar():
"""
Renders the file sidebar with all the open/view/run/delete logic.
Excludes README.md from the file list.
"""
all_files = glob.glob("*.md")
# Exclude README.md
all_files = [f for f in all_files if f != 'README.md']
# Filter out short-named files if desired
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 5]
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
# Buttons for "Delete All" and "Download"
Files1, Files2 = st.sidebar.columns(2)
with Files1:
if st.button("๐Ÿ—‘ Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
with Files2:
if st.button("โฌ‡๏ธ Download"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
file_contents = ''
file_name = ''
next_action = ''
# Each file row
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1])
with col1:
if st.button("๐ŸŒ", key="md_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'md'
st.session_state['next_action'] = next_action
with col2:
st.markdown(get_table_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("๐Ÿ“‚", key="open_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'open'
st.session_state['lastfilename'] = file
st.session_state['filename'] = file
st.session_state['filetext'] = file_contents
st.session_state['next_action'] = next_action
with col4:
if st.button("โ–ถ๏ธ", key="read_"+file):
file_contents = load_file(file)
file_name = file
next_action = 'search'
st.session_state['next_action'] = next_action
with col5:
if st.button("๐Ÿ—‘", key="delete_"+file):
os.remove(file)
st.rerun()
# Duplicate detection
file_sizes = [get_file_size(file) for file in all_files]
previous_size = None
st.sidebar.title("File Operations")
for file, size in zip(all_files, file_sizes):
duplicate_flag = "๐Ÿšฉ" if size == previous_size else ""
with st.sidebar.expander(f"File: {file} {duplicate_flag}"):
st.text(f"Size: {size} bytes")
if st.button("View", key=f"view_{file}"):
try:
with open(file, "r", encoding='utf-8') as f:
file_content = f.read()
st.code(file_content, language="markdown")
except UnicodeDecodeError:
st.error("Failed to decode the file with UTF-8.")
if st.button("Delete", key=f"delete3_{file}"):
os.remove(file)
st.rerun()
previous_size = size
# If we have loaded something
if len(file_contents) > 0:
if next_action == 'open':
open1, open2 = st.columns([0.8, 0.2])
with open1:
file_name_input = st.text_input('File Name:', file_name, key='file_name_input')
file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area')
if st.button('๐Ÿ’พ Save File'):
with open(file_name_input, 'w', encoding='utf-8') as f:
f.write(file_content_area)
st.markdown(f'Saved {file_name_input} successfully.')
elif next_action == 'search':
file_content_area = st.text_area("File Contents:", file_contents, height=500)
user_prompt = PromptPrefix2 + file_contents
st.markdown(user_prompt)
if st.button('๐Ÿ”Re-Code'):
search_arxiv(file_contents)
elif next_action == 'md':
st.markdown(file_contents)
SpeechSynthesis(file_contents)
if st.button('๐Ÿ”Run'):
st.write("Running GPT logic placeholder...")
# ---------------------------
# Basic Scoring / Glossaries
# ---------------------------
score_dir = "scores"
os.makedirs(score_dir, exist_ok=True)
def generate_key(label, header, idx):
return f"{header}_{label}_{idx}_key"
def update_score(key, increment=1):
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
else:
score_data = {"clicks": 0, "score": 0}
score_data["clicks"] += increment
score_data["score"] += increment
with open(score_file, "w") as file:
json.dump(score_data, file)
return score_data["score"]
def load_score(key):
score_file = os.path.join(score_dir, f"{key}.json")
if os.path.exists(score_file):
with open(score_file, "r") as file:
score_data = json.load(file)
return score_data["score"]
return 0
def display_buttons_with_scores(num_columns_text):
game_emojis = {
"Dungeons and Dragons": "๐Ÿ‰",
"Call of Cthulhu": "๐Ÿ™",
"GURPS": "๐ŸŽฒ",
"Pathfinder": "๐Ÿ—บ๏ธ",
"Kindred of the East": "๐ŸŒ…",
"Changeling": "๐Ÿƒ",
}
topic_emojis = {
"Core Rulebooks": "๐Ÿ“š",
"Maps & Settings": "๐Ÿ—บ๏ธ",
"Game Mechanics & Tools": "โš™๏ธ",
"Monsters & Adversaries": "๐Ÿ‘น",
"Campaigns & Adventures": "๐Ÿ“œ",
"Creatives & Assets": "๐ŸŽจ",
"Game Master Resources": "๐Ÿ› ๏ธ",
"Lore & Background": "๐Ÿ“–",
"Character Development": "๐Ÿง",
"Homebrew Content": "๐Ÿ”ง",
"General Topics": "๐ŸŒ",
}
for category, games in roleplaying_glossary.items():
category_emoji = topic_emojis.get(category, "๐Ÿ”")
st.markdown(f"## {category_emoji} {category}")
for game, terms in games.items():
game_emoji = game_emojis.get(game, "๐ŸŽฎ")
for term in terms:
key = f"{category}_{game}_{term}".replace(' ', '_').lower()
score = load_score(key)
if st.button(f"{game_emoji} {category} {game} {term} {score}", key=key):
newscore = update_score(key.replace('?',''))
st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}")
# --------------------
# Image & Video Grids
# --------------------
def display_images_and_wikipedia_summaries(num_columns=4):
image_files = [f for f in os.listdir('.') if f.endswith('.png')]
if not image_files:
st.write("No PNG images found in the current directory.")
return
image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for image_file in image_files_sorted:
with cols[col_index % num_columns]:
try:
image = Image.open(image_file)
st.image(image, use_column_width=True)
k = image_file.split('.')[0]
display_glossary_entity(k)
image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}")
if len(image_text_input) > 0:
response = process_image(image_file, image_text_input)
st.markdown(response)
except:
st.write(f"Could not open {image_file}")
col_index += 1
def display_videos_and_links(num_columns=4):
video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))]
if not video_files:
st.write("No MP4 or WEBM videos found in the current directory.")
return
video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
cols = st.columns(num_columns)
col_index = 0
for video_file in video_files_sorted:
with cols[col_index % num_columns]:
k = video_file.split('.')[0]
st.video(video_file, format='video/mp4', start_time=0)
display_glossary_entity(k)
video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}")
if video_text_input:
try:
seconds_per_frame = 10
process_video(video_file, seconds_per_frame)
except ValueError:
st.error("Invalid input for seconds per frame!")
col_index += 1
# -------------------------------------
# Query Param Helpers
# -------------------------------------
def get_all_query_params(key):
return st.query_params.get(key, [])
def clear_query_params():
st.query_params
def display_content_or_image(query):
for category, term_list in transhuman_glossary.items():
for term in term_list:
if query.lower() in term.lower():
st.subheader(f"Found in {category}:")
st.write(term)
return True
image_path = f"images/{query}.png"
if os.path.exists(image_path):
st.image(image_path, caption=f"Image for {query}")
return True
st.warning("No matching content or image found.")
return False
# ------------------------------------
# MERMAID DIAGRAM with Clickable Links
# ------------------------------------
def generate_mermaid_html(mermaid_code: str) -> str:
return f"""
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
<style>
.centered-mermaid {{
display: flex;
justify-content: center;
margin: 20px auto;
}}
.mermaid {{
max-width: 800px;
}}
</style>
</head>
<body>
<div class="mermaid centered-mermaid">
{mermaid_code}
</div>
<script>
mermaid.initialize({{ startOnLoad: true }});
</script>
</body>
</html>
"""
def append_model_param(url: str, model_selected: bool) -> str:
if not model_selected:
return url
delimiter = "&" if "?" in url else "?"
return f"{url}{delimiter}model=1"
def main():
st.set_page_config(page_title="Mermaid + Clickable Links Demo", layout="wide")
# 1) Parse query strings using st.query_params
query_params = st.query_params
current_q = query_params.get("q", [""])[0]
current_r = query_params.get("r", [""])[0]
st.sidebar.write("## Diagram Link Settings")
model_selected = st.sidebar.checkbox("Append ?model=1 to each link?")
# Load the code from files we created or updated
# If the user empties them, they remain blank until re-saved
markdown_default = load_file("MarkdownCode.md")
mermaid_default = load_file("MermaidCode.md")
# Rebuild the clickable diagram code if user wants model param
base_diagram = mermaid_default or ""
lines = base_diagram.strip().split("\n")
new_lines = []
for line in lines:
if "click " in line and '"/?' in line:
parts = re.split(r'click\s+\S+\s+"([^"]+)"\s+("_self")', line)
if len(parts) == 4:
url = parts[1]
updated_url = append_model_param(url, model_selected)
new_line = f"{parts[0]}\"{updated_url}\" {parts[2]}"
new_lines.append(new_line)
else:
new_lines.append(line)
else:
new_lines.append(line)
mermaid_code = "\n".join(new_lines)
st.title("Top-Centered Mermaid Diagram with Clickable Links ๐Ÿบ")
diagram_html = generate_mermaid_html(mermaid_code)
components.html(diagram_html, height=400, scrolling=True)
# Show inbound ?q or ?r
if current_q:
st.markdown(f"**Detected Query**: `?q={current_q}`")
display_content_or_image(current_q)
if current_r:
st.markdown(f"**Detected Relationship**: `?r={current_r}`")
left_col, right_col = st.columns(2)
# --- Left: Markdown Editor
with left_col:
st.subheader("Markdown Side ๐Ÿ“")
# Load from session or from MarkdownCode.md
if "markdown_text" not in st.session_state:
st.session_state["markdown_text"] = markdown_default
markdown_text = st.text_area(
"Edit Markdown:",
value=st.session_state["markdown_text"],
height=300
)
st.session_state["markdown_text"] = markdown_text
# Button row
colA, colB, colC, colD = st.columns(4)
with colA:
if st.button("๐Ÿ”„ Refresh"):
st.write("**Markdown** content refreshed! ๐Ÿฟ")
with colB:
if st.button("โŒ Clear"):
st.session_state["markdown_text"] = ""
st.experimental_rerun()
with colC:
if st.button("๐Ÿ’พ File Save"):
with open("MarkdownCode.md", 'w', encoding='utf-8') as f:
f.write(markdown_text)
st.success("Saved to MarkdownCode.md")
with colD:
# "Save As" with a text_input
md_filename = st.text_input("Filename for Markdown:", value="MarkdownCode.md", key="md_filename_key")
if st.button("๐Ÿ’พ Save As"):
with open(md_filename, 'w', encoding='utf-8') as f:
f.write(markdown_text)
st.success(f"Saved to {md_filename}")
st.markdown("---")
st.markdown("**Preview:**")
st.markdown(markdown_text)
# --- Right: Mermaid Editor
with right_col:
st.subheader("Mermaid Side ๐Ÿงœโ€โ™‚๏ธ")
if "current_mermaid" not in st.session_state:
st.session_state["current_mermaid"] = mermaid_default
mermaid_input = st.text_area(
"Edit Mermaid Code:",
value=st.session_state["current_mermaid"],
height=300
)
colC, colD, colE, colF = st.columns(4)
with colC:
if st.button("๐ŸŽจ Refresh"):
st.session_state["current_mermaid"] = mermaid_input
st.write("**Mermaid** diagram refreshed! ๐ŸŒˆ")
st.experimental_rerun()
with colD:
if st.button("โŒ Clear "):
st.session_state["current_mermaid"] = ""
st.experimental_rerun()
with colE:
if st.button("๐Ÿ’พ File Save "):
with open("MermaidCode.md", 'w', encoding='utf-8') as f:
f.write(mermaid_input)
st.success("Saved to MermaidCode.md")
with colF:
# "Save As" with text_input
mermaid_filename = st.text_input("Filename for Mermaid:", value="MermaidCode.md", key="mermaid_filename_key")
if st.button("๐Ÿ’พ Save As "):
with open(mermaid_filename, 'w', encoding='utf-8') as f:
f.write(mermaid_input)
st.success(f"Saved to {mermaid_filename}")
st.markdown("---")
st.markdown("**Mermaid Source:**")
st.code(mermaid_input, language="python", line_numbers=True)
st.markdown("---")
st.header("Media Galleries")
num_columns_images = st.slider("Choose Number of Image Columns", 1, 15, 5, key="num_columns_images")
display_images_and_wikipedia_summaries(num_columns_images)
num_columns_video = st.slider("Choose Number of Video Columns", 1, 15, 5, key="num_columns_video")
display_videos_and_links(num_columns_video)
showExtendedTextInterface = False
if showExtendedTextInterface:
display_glossary_grid(roleplaying_glossary)
num_columns_text = st.slider("Choose Number of Text Columns", 1, 15, 4, key="num_columns_text")
display_buttons_with_scores(num_columns_text)
st.markdown("Extended text interface is on...")
FileSidebar()
# Random Title at bottom
titles = [
"๐Ÿง ๐ŸŽญ Semantic Symphonies & Episodic Encores",
"๐ŸŒŒ๐ŸŽผ AI Rhythms of Memory Lane",
"๐ŸŽญ๐ŸŽ‰ Cognitive Crescendos & Neural Harmonies",
"๐Ÿง ๐ŸŽบ Mnemonic Melodies & Synaptic Grooves",
"๐ŸŽผ๐ŸŽธ Straight Outta Cognition",
"๐Ÿฅ๐ŸŽป Jazzy Jambalaya of AI Memories",
"๐Ÿฐ Semantic Soul & Episodic Essence",
"๐Ÿฅ๐ŸŽป The Music Of AI's Mind"
]
selected_title = random.choice(titles)
st.markdown(f"**{selected_title}**")
if __name__ == "__main__":
main()