#!/usr/bin/env python3 import os import re import glob import json import base64 import zipfile import random import requests import openai from PIL import Image from urllib.parse import quote import streamlit as st import streamlit.components.v1 as components # For demonstration, we'll import from huggingface_hub # (You can omit if you're not using HF or adapt your own client) from huggingface_hub import InferenceClient # ---------------------------- # Placeholder data structures # ---------------------------- # Example placeholders for prompt prefixes PromptPrefix = "AI-Search: " PromptPrefix2 = "AI-Refine: " PromptPrefix3 = "AI-JS: " # Minimal example of a roleplaying glossary roleplaying_glossary = { "Core Rulebooks": { "Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"], "GURPS": ["Basic Set Characters", "Basic Set Campaigns"] }, "Campaigns & Adventures": { "Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"] } } # Minimal example of a transhuman glossary transhuman_glossary = { "Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"], "Cybernetics": ["Robotic Limbs", "Augmented Eyes"], } # Just to demonstrate how your "search_arxiv" or "SpeechSynthesis" etc. might be placeholders def process_text(text): st.write(f"process_text called with: {text}") def process_text2(text_input): return f"[process_text2 placeholder] Received: {text_input}" def search_arxiv(text): st.write(f"search_arxiv called with: {text}") def SpeechSynthesis(text): st.write(f"SpeechSynthesis called with: {text}") def process_image(image_file, prompt): return f"[process_image placeholder] Processing {image_file} with prompt: {prompt}" def process_video(video_file, seconds_per_frame): st.write(f"[process_video placeholder] Video: {video_file}, seconds/frame: {seconds_per_frame}") def search_glossary(content): st.write(f"search_glossary called with: {content}") # If you have HF Inference endpoint, set them here, else placeholders API_URL = "https://huggingface-inference-endpoint-placeholder" API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" @st.cache_resource def InferenceLLM(prompt): return f"[InferenceLLM placeholder response to prompt: {prompt}]" # -------------------------------------- # Display Entities & Glossary Functions # -------------------------------------- @st.cache_resource def display_glossary_entity(k): """ Example of how you'd create multiple links for a glossary entity. This was in your original snippet. We'll keep it short. """ search_urls = { "๐Ÿš€๐ŸŒŒArXiv": lambda k: f"/?q={quote(k)}", "๐ŸƒAnalyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}", "๐Ÿ“šPyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}", "๐Ÿ”ฌJSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}", "๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", "๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}", "๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}", "๐ŸŽฅ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}", } links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()]) st.markdown(f"**{k}** {links_md}", unsafe_allow_html=True) @st.cache_resource def display_glossary_grid(roleplaying_glossary): """ Displays a glossary in columns with multiple link emojis. """ search_urls = { "๐Ÿš€๐ŸŒŒArXiv": lambda k: f"/?q={quote(k)}", "๐ŸƒAnalyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}", "๐Ÿ“šPyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}", "๐Ÿ”ฌJSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}", "๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", "๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}", "๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}", "๐ŸŽฅ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}", } for category, details in roleplaying_glossary.items(): st.write(f"### {category}") cols = st.columns(len(details)) for idx, (game, terms) in enumerate(details.items()): with cols[idx]: st.markdown(f"#### {game}") for term in terms: links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) st.markdown(f"**{term}** {links_md}", unsafe_allow_html=True) # -------------------- # File-Handling Logic # -------------------- def load_file(file_path): try: with open(file_path, "r", encoding='utf-8') as f: return f.read() except: return "" @st.cache_resource def create_zip_of_files(files): zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip" with zipfile.ZipFile(zip_name, 'w') as zipf: for file in files: zipf.write(file) return zip_name @st.cache_resource def get_zip_download_link(zip_file): with open(zip_file, 'rb') as f: data = f.read() b64 = base64.b64encode(data).decode() href = f'Download All' return href def get_table_download_link(file_path): """ Creates a download link for a single file from your snippet. """ try: with open(file_path, 'r', encoding='utf-8') as file: data = file.read() b64 = base64.b64encode(data.encode()).decode() file_name = os.path.basename(file_path) ext = os.path.splitext(file_name)[1] mime_map = { '.txt': 'text/plain', '.py': 'text/plain', '.xlsx': 'text/plain', '.csv': 'text/plain', '.htm': 'text/html', '.md': 'text/markdown', '.wav': 'audio/wav' } mime_type = mime_map.get(ext, 'application/octet-stream') href = f'{file_name}' return href except: return '' def get_file_size(file_path): return os.path.getsize(file_path) def compare_and_delete_files(files): """ Compare file sizes. If duplicates exist, keep only the latest. """ if not files: st.warning("No files to compare.") return file_sizes = {} for file in files: size = os.path.getsize(file) file_sizes.setdefault(size, []).append(file) # Remove all but the latest file for each size for size, paths in file_sizes.items(): if len(paths) > 1: latest_file = max(paths, key=os.path.getmtime) for file in paths: if file != latest_file: os.remove(file) st.success(f"Deleted {file} as a duplicate.") st.rerun() def FileSidebar(): """ Renders the file sidebar with all the open/view/run/delete logic. """ all_files = glob.glob("*.md") # Example logic filtering filenames all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 5] all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # Buttons for "Delete All" and "Download" Files1, Files2 = st.sidebar.columns(2) with Files1: if st.button("๐Ÿ—‘ Delete All"): for file in all_files: os.remove(file) st.rerun() with Files2: if st.button("โฌ‡๏ธ Download"): zip_file = create_zip_of_files(all_files) st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) file_contents = '' file_name = '' next_action = '' # Each file row for file in all_files: col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) with col1: # Show an emoji button to do "md" if st.button("๐ŸŒ", key="md_"+file): file_contents = load_file(file) file_name = file next_action = 'md' st.session_state['next_action'] = next_action with col2: st.markdown(get_table_download_link(file), unsafe_allow_html=True) with col3: if st.button("๐Ÿ“‚", key="open_"+file): file_contents = load_file(file) file_name = file next_action = 'open' st.session_state['lastfilename'] = file st.session_state['filename'] = file st.session_state['filetext'] = file_contents st.session_state['next_action'] = next_action with col4: if st.button("โ–ถ๏ธ", key="read_"+file): file_contents = load_file(file) file_name = file next_action = 'search' st.session_state['next_action'] = next_action with col5: if st.button("๐Ÿ—‘", key="delete_"+file): os.remove(file) file_name = file st.rerun() next_action = 'delete' st.session_state['next_action'] = next_action # Duplicate detection file_sizes = [get_file_size(file) for file in all_files] previous_size = None st.sidebar.title("File Operations") for file, size in zip(all_files, file_sizes): duplicate_flag = "๐Ÿšฉ" if size == previous_size else "" with st.sidebar.expander(f"File: {file} {duplicate_flag}"): st.text(f"Size: {size} bytes") if st.button("View", key=f"view_{file}"): try: with open(file, "r", encoding='utf-8') as f: file_content = f.read() st.code(file_content, language="markdown") except UnicodeDecodeError: st.error("Failed to decode the file with UTF-8.") if st.button("Delete", key=f"delete3_{file}"): os.remove(file) st.rerun() previous_size = size # If we have loaded something if len(file_contents) > 0: if next_action == 'open': open1, open2 = st.columns([0.8, 0.2]) with open1: file_name_input = st.text_input('File Name:', file_name, key='file_name_input', on_change=None) file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area') # Minimal โ€œSaveโ€ stubs if st.button('๐Ÿ’พ Save File'): with open(file_name_input, 'w', encoding='utf-8') as f: f.write(file_content_area) st.markdown(f'Saved {file_name_input} successfully.') elif next_action == 'search': # Example usage file_content_area = st.text_area("File Contents:", file_contents, height=500) user_prompt = PromptPrefix2 + file_contents st.markdown(user_prompt) if st.button('๐Ÿ”Re-Code'): search_arxiv(file_contents) elif next_action == 'md': st.markdown(file_contents) SpeechSynthesis(file_contents) if st.button('๐Ÿ”Run'): st.write("Running GPT logic placeholder...") # --------------------------- # Basic Scoring / Glossaries # --------------------------- score_dir = "scores" os.makedirs(score_dir, exist_ok=True) def generate_key(label, header, idx): return f"{header}_{label}_{idx}_key" def update_score(key, increment=1): score_file = os.path.join(score_dir, f"{key}.json") if os.path.exists(score_file): with open(score_file, "r") as file: score_data = json.load(file) else: score_data = {"clicks": 0, "score": 0} score_data["clicks"] += increment score_data["score"] += increment with open(score_file, "w") as file: json.dump(score_data, file) return score_data["score"] def load_score(key): score_file = os.path.join(score_dir, f"{key}.json") if os.path.exists(score_file): with open(score_file, "r") as file: score_data = json.load(file) return score_data["score"] return 0 def display_buttons_with_scores(num_columns_text): """ Show buttons that track a 'score' from your glossary data. """ game_emojis = { "Dungeons and Dragons": "๐Ÿ‰", "Call of Cthulhu": "๐Ÿ™", "GURPS": "๐ŸŽฒ", "Pathfinder": "๐Ÿ—บ๏ธ", "Kindred of the East": "๐ŸŒ…", "Changeling": "๐Ÿƒ", } topic_emojis = { "Core Rulebooks": "๐Ÿ“š", "Maps & Settings": "๐Ÿ—บ๏ธ", "Game Mechanics & Tools": "โš™๏ธ", "Monsters & Adversaries": "๐Ÿ‘น", "Campaigns & Adventures": "๐Ÿ“œ", "Creatives & Assets": "๐ŸŽจ", "Game Master Resources": "๐Ÿ› ๏ธ", "Lore & Background": "๐Ÿ“–", "Character Development": "๐Ÿง", "Homebrew Content": "๐Ÿ”ง", "General Topics": "๐ŸŒ", } for category, games in roleplaying_glossary.items(): category_emoji = topic_emojis.get(category, "๐Ÿ”") st.markdown(f"## {category_emoji} {category}") for game, terms in games.items(): game_emoji = game_emojis.get(game, "๐ŸŽฎ") for term in terms: key = f"{category}_{game}_{term}".replace(' ', '_').lower() score = load_score(key) if st.button(f"{game_emoji} {category} {game} {term} {score}", key=key): newscore = update_score(key.replace('?','')) st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}") # -------------------- # Image & Video Grids # -------------------- def display_images_and_wikipedia_summaries(num_columns=4): """ Display all .png images in the current directory in a grid, referencing the name as a 'keyword'. """ image_files = [f for f in os.listdir('.') if f.endswith('.png')] if not image_files: st.write("No PNG images found in the current directory.") return # Sort by length of filename, just as an example image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0])) cols = st.columns(num_columns) col_index = 0 for image_file in image_files_sorted: with cols[col_index % num_columns]: try: image = Image.open(image_file) st.image(image, use_column_width=True) k = image_file.split('.')[0] display_glossary_entity(k) # Provide a text input for user interactions image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}") if len(image_text_input) > 0: response = process_image(image_file, image_text_input) st.markdown(response) except: st.write(f"Could not open {image_file}") col_index += 1 def display_videos_and_links(num_columns=4): """ Displays all .mp4 or .webm videos found in the current directory in a grid. """ video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))] if not video_files: st.write("No MP4 or WEBM videos found in the current directory.") return video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0])) cols = st.columns(num_columns) col_index = 0 for video_file in video_files_sorted: with cols[col_index % num_columns]: k = video_file.split('.')[0] st.video(video_file, format='video/mp4', start_time=0) display_glossary_entity(k) # Provide a text input video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}") if video_text_input: try: # Hard-coded example seconds_per_frame = 10 process_video(video_file, seconds_per_frame) except ValueError: st.error("Invalid input for seconds per frame!") col_index += 1 # ------------------------------------- # Query Param Helpers from your snippet # ------------------------------------- def get_all_query_params(key): return st.query_params().get(key, []) def clear_query_params(): st.query_params() def display_content_or_image(query): """ If a query matches something in transhuman_glossary or a local image, show it. Otherwise warn no match. """ for category, term_list in transhuman_glossary.items(): for term in term_list: if query.lower() in term.lower(): st.subheader(f"Found in {category}:") st.write(term) return True image_path = f"images/{query}.png" if os.path.exists(image_path): st.image(image_path, caption=f"Image for {query}") return True st.warning("No matching content or image found.") return False # ------------------------------------ # MERMAID DIAGRAM with Clickable Links # ------------------------------------ def generate_mermaid_html(mermaid_code: str) -> str: """ Returns HTML embedding a Mermaid diagram. We embed the code in
and center it with CSS. """ return f"""
{mermaid_code}
""" def append_model_param(url: str, model_selected: bool) -> str: """ If 'Model' checkbox is selected, we append '&model=1' or '?model=1' to the URL. We'll handle whether the URL already has a '?' or not. """ if not model_selected: return url delimiter = "&" if "?" in url else "?" return f"{url}{delimiter}model=1" # For demonstration, we add clickable nodes & edges: # click "" "_self" # If you want edges to be clickable, you can label them as well, # but Mermaid typically only has a 'click' property for nodes. DEFAULT_MERMAID = """ flowchart LR %% Notice we have "click LLM ..." lines: U((User ๐Ÿ˜Ž)) -- "Talk ๐Ÿ—ฃ๏ธ" --> LLM[LLM Agent ๐Ÿค–\\nExtract Info] click U "/?q=User%20๐Ÿ˜Ž" _self click LLM "/?q=LLM%20Agent%20Extract%20Info" _self LLM -- "Query ๐Ÿ”" --> HS[Hybrid Search ๐Ÿ”Ž\\nVector+NER+Lexical] click HS "/?q=Hybrid%20Search%20Vector+NER+Lexical" _self HS -- "Reason ๐Ÿค”" --> RE[Reasoning Engine ๐Ÿ› ๏ธ\\nNeuralNetwork+Medical] click RE "/?q=Reasoning%20Engine%20NeuralNetwork+Medical" _self RE -- "Link ๐Ÿ“ก" --> KG((Knowledge Graph ๐Ÿ“š\\nOntology+GAR+RAG)) click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" _self %% If you want an "edge click" to pass ?r= something, %% Mermaid doesn't have direct 'click' for edges, %% but you can define them as nodes or use linkStyle trick, etc. """ # --------------------------- # Streamlit Main App # --------------------------- def main(): st.set_page_config(page_title="Mermaid + Clickable Links Demo", layout="wide") # 1) Parse query strings on page load query_params = st.experimental_get_query_params() current_q = query_params.get("q", [""])[0] # If present, first string current_r = query_params.get("r", [""])[0] # 2) Let user pick if they want to add the "model=1" param to clickable links st.sidebar.write("## Diagram Link Settings") model_selected = st.sidebar.checkbox("Append ?model=1 to each link?") # 3) Generate a dynamic Mermaid code, appending model param if user wants # We'll do a simple string replace to incorporate the model param # For a robust approach, parse each URL carefully, then reassemble. base_diagram = DEFAULT_MERMAID lines = base_diagram.strip().split("\n") new_lines = [] for line in lines: if "click " in line and '"/?' in line: # e.g. click LLM "/?q=LLM%20Agent" _self # let's isolate the URL part parts = re.split(r'click\s+\S+\s+"([^"]+)"\s+("_self")', line) if len(parts) == 4: # parts[0] = 'click LLM ' # parts[1] = '/?q=LLM%20Agent%20Extract%20Info' # parts[2] = ' _self' # parts[3] = '' (trailing possibly) url = parts[1] updated_url = append_model_param(url, model_selected) # Recombine new_line = f"{parts[0]}\"{updated_url}\" {parts[2]}" new_lines.append(new_line) else: new_lines.append(line) else: new_lines.append(line) mermaid_code = "\n".join(new_lines) # 4) Render the top-centered Mermaid diagram st.title("Top-Centered Mermaid Diagram with Clickable Links ๐Ÿบ") diagram_html = generate_mermaid_html(mermaid_code) components.html(diagram_html, height=400, scrolling=True) # 5) Show what the inbound ?q / ?r was if current_q: st.markdown(f"**Detected Query**: `?q={current_q}`") display_content_or_image(current_q) if current_r: st.markdown(f"**Detected Relationship**: `?r={current_r}`") # 6) Editor Columns: Markdown & Mermaid left_col, right_col = st.columns(2) # --- Left: Markdown Editor with left_col: st.subheader("Markdown Side ๐Ÿ“") if "markdown_text" not in st.session_state: st.session_state["markdown_text"] = "## Hello!\nType some *Markdown* here.\n" # Text area markdown_text = st.text_area( "Edit Markdown:", value=st.session_state["markdown_text"], height=300 ) st.session_state["markdown_text"] = markdown_text # Button row colA, colB = st.columns(2) with colA: if st.button("๐Ÿ”„ Refresh Markdown"): st.write("**Markdown** content refreshed! ๐Ÿฟ") with colB: if st.button("โŒ Clear Markdown"): st.session_state["markdown_text"] = "" st.experimental_rerun() # Display st.markdown("---") st.markdown("**Preview:**") st.markdown(markdown_text) # --- Right: Mermaid Editor with right_col: st.subheader("Mermaid Side ๐Ÿงœโ€โ™‚๏ธ") if "current_mermaid" not in st.session_state: st.session_state["current_mermaid"] = mermaid_code mermaid_input = st.text_area( "Edit Mermaid Code:", value=st.session_state["current_mermaid"], height=300 ) colC, colD = st.columns(2) with colC: if st.button("๐ŸŽจ Refresh Diagram"): # Rebuild the diagram st.session_state["current_mermaid"] = mermaid_input st.write("**Mermaid** diagram refreshed! ๐ŸŒˆ") st.experimental_rerun() with colD: if st.button("โŒ Clear Mermaid"): st.session_state["current_mermaid"] = "" st.experimental_rerun() st.markdown("---") st.markdown("**Mermaid Source:**") st.code(mermaid_input, language="python", line_numbers=True) # 7) Show Sliders & image/video galleries st.markdown("---") st.header("Media Galleries") num_columns_images = st.slider("Choose Number of Image Columns", 1, 15, 5, key="num_columns_images") display_images_and_wikipedia_summaries(num_columns_images) num_columns_video = st.slider("Choose Number of Video Columns", 1, 15, 5, key="num_columns_video") display_videos_and_links(num_columns_video) # 8) Optional "Extended" UI showExtendedTextInterface = False if showExtendedTextInterface: display_glossary_grid(roleplaying_glossary) num_columns_text = st.slider("Choose Number of Text Columns", 1, 15, 4, key="num_columns_text") display_buttons_with_scores(num_columns_text) st.markdown("Extended text interface is on...") # 9) Render the file sidebar FileSidebar() # 10) Random Title at bottom titles = [ "๐Ÿง ๐ŸŽญ Semantic Symphonies & Episodic Encores", "๐ŸŒŒ๐ŸŽผ AI Rhythms of Memory Lane", "๐ŸŽญ๐ŸŽ‰ Cognitive Crescendos & Neural Harmonies", "๐Ÿง ๐ŸŽบ Mnemonic Melodies & Synaptic Grooves", "๐ŸŽผ๐ŸŽธ Straight Outta Cognition", "๐Ÿฅ๐ŸŽป Jazzy Jambalaya of AI Memories", "๐Ÿฐ Semantic Soul & Episodic Essence", "๐Ÿฅ๐ŸŽป The Music Of AI's Mind" ] selected_title = random.choice(titles) st.markdown(f"**{selected_title}**") if __name__ == "__main__": main()