#!/usr/bin/env python3 import os import re import glob import json import base64 import zipfile import random import requests import openai from PIL import Image from urllib.parse import quote import streamlit as st import streamlit.components.v1 as components # For demonstration, we'll import from huggingface_hub # (You can omit if you're not using HF or adapt your own client) from huggingface_hub import InferenceClient # ---------------------------- # Placeholder data structures # ---------------------------- # Example placeholders for prompt prefixes PromptPrefix = "AI-Search: " PromptPrefix2 = "AI-Refine: " PromptPrefix3 = "AI-JS: " # Minimal example of a roleplaying glossary roleplaying_glossary = { "Core Rulebooks": { "Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"], "GURPS": ["Basic Set Characters", "Basic Set Campaigns"] }, "Campaigns & Adventures": { "Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"] } } # Minimal example of a transhuman glossary transhuman_glossary = { "Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"], "Cybernetics": ["Robotic Limbs", "Augmented Eyes"], } # Just to demonstrate how your "search_arxiv" or "SpeechSynthesis" etc. might be placeholders def process_text(text): st.write(f"process_text called with: {text}") def process_text2(text_input): return f"[process_text2 placeholder] Received: {text_input}" def search_arxiv(text): st.write(f"search_arxiv called with: {text}") def SpeechSynthesis(text): st.write(f"SpeechSynthesis called with: {text}") def process_image(image_file, prompt): return f"[process_image placeholder] Processing {image_file} with prompt: {prompt}" def process_video(video_file, seconds_per_frame): st.write(f"[process_video placeholder] Video: {video_file}, seconds/frame: {seconds_per_frame}") def search_glossary(content): st.write(f"search_glossary called with: {content}") # If you have HF Inference endpoint, set them here, else placeholders API_URL = "https://huggingface-inference-endpoint-placeholder" API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" @st.cache_resource def InferenceLLM(prompt): return f"[InferenceLLM placeholder response to prompt: {prompt}]" # -------------------------------------- # Display Entities & Glossary Functions # -------------------------------------- @st.cache_resource def display_glossary_entity(k): """ Example of how you'd create multiple links for a glossary entity. This was in your original snippet. We'll keep it short. """ search_urls = { "๐๐ArXiv": lambda k: f"/?q={quote(k)}", "๐Analyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}", "๐PyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}", "๐ฌJSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}", "๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", "๐": lambda k: f"https://www.google.com/search?q={quote(k)}", "๐": lambda k: f"https://www.bing.com/search?q={quote(k)}", "๐ฅ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "๐ฆ": lambda k: f"https://twitter.com/search?q={quote(k)}", } links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()]) st.markdown(f"**{k}** {links_md}", unsafe_allow_html=True) @st.cache_resource def display_glossary_grid(roleplaying_glossary): """ Displays a glossary in columns with multiple link emojis. """ search_urls = { "๐๐ArXiv": lambda k: f"/?q={quote(k)}", "๐Analyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}", "๐PyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}", "๐ฌJSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}", "๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", "๐": lambda k: f"https://www.google.com/search?q={quote(k)}", "๐": lambda k: f"https://www.bing.com/search?q={quote(k)}", "๐ฅ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "๐ฆ": lambda k: f"https://twitter.com/search?q={quote(k)}", } for category, details in roleplaying_glossary.items(): st.write(f"### {category}") cols = st.columns(len(details)) for idx, (game, terms) in enumerate(details.items()): with cols[idx]: st.markdown(f"#### {game}") for term in terms: links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) st.markdown(f"**{term}** {links_md}", unsafe_allow_html=True) # -------------------- # File-Handling Logic # -------------------- def load_file(file_path): try: with open(file_path, "r", encoding='utf-8') as f: return f.read() except: return "" @st.cache_resource def create_zip_of_files(files): zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip" with zipfile.ZipFile(zip_name, 'w') as zipf: for file in files: zipf.write(file) return zip_name @st.cache_resource def get_zip_download_link(zip_file): with open(zip_file, 'rb') as f: data = f.read() b64 = base64.b64encode(data).decode() href = f'Download All' return href def get_table_download_link(file_path): """ Creates a download link for a single file from your snippet. """ try: with open(file_path, 'r', encoding='utf-8') as file: data = file.read() b64 = base64.b64encode(data.encode()).decode() file_name = os.path.basename(file_path) ext = os.path.splitext(file_name)[1] mime_map = { '.txt': 'text/plain', '.py': 'text/plain', '.xlsx': 'text/plain', '.csv': 'text/plain', '.htm': 'text/html', '.md': 'text/markdown', '.wav': 'audio/wav' } mime_type = mime_map.get(ext, 'application/octet-stream') href = f'{file_name}' return href except: return '' def get_file_size(file_path): return os.path.getsize(file_path) def compare_and_delete_files(files): """ Compare file sizes. If duplicates exist, keep only the latest. """ if not files: st.warning("No files to compare.") return file_sizes = {} for file in files: size = os.path.getsize(file) file_sizes.setdefault(size, []).append(file) # Remove all but the latest file for each size for size, paths in file_sizes.items(): if len(paths) > 1: latest_file = max(paths, key=os.path.getmtime) for file in paths: if file != latest_file: os.remove(file) st.success(f"Deleted {file} as a duplicate.") st.rerun() def FileSidebar(): """ Renders the file sidebar with all the open/view/run/delete logic. """ all_files = glob.glob("*.md") # Example logic filtering filenames all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 5] all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # Buttons for "Delete All" and "Download" Files1, Files2 = st.sidebar.columns(2) with Files1: if st.button("๐ Delete All"): for file in all_files: os.remove(file) st.rerun() with Files2: if st.button("โฌ๏ธ Download"): zip_file = create_zip_of_files(all_files) st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) file_contents = '' file_name = '' next_action = '' # Each file row for file in all_files: col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) with col1: # Show an emoji button to do "md" if st.button("๐", key="md_"+file): file_contents = load_file(file) file_name = file next_action = 'md' st.session_state['next_action'] = next_action with col2: st.markdown(get_table_download_link(file), unsafe_allow_html=True) with col3: if st.button("๐", key="open_"+file): file_contents = load_file(file) file_name = file next_action = 'open' st.session_state['lastfilename'] = file st.session_state['filename'] = file st.session_state['filetext'] = file_contents st.session_state['next_action'] = next_action with col4: if st.button("โถ๏ธ", key="read_"+file): file_contents = load_file(file) file_name = file next_action = 'search' st.session_state['next_action'] = next_action with col5: if st.button("๐", key="delete_"+file): os.remove(file) file_name = file st.rerun() next_action = 'delete' st.session_state['next_action'] = next_action # Duplicate detection file_sizes = [get_file_size(file) for file in all_files] previous_size = None st.sidebar.title("File Operations") for file, size in zip(all_files, file_sizes): duplicate_flag = "๐ฉ" if size == previous_size else "" with st.sidebar.expander(f"File: {file} {duplicate_flag}"): st.text(f"Size: {size} bytes") if st.button("View", key=f"view_{file}"): try: with open(file, "r", encoding='utf-8') as f: file_content = f.read() st.code(file_content, language="markdown") except UnicodeDecodeError: st.error("Failed to decode the file with UTF-8.") if st.button("Delete", key=f"delete3_{file}"): os.remove(file) st.rerun() previous_size = size # If we have loaded something if len(file_contents) > 0: if next_action == 'open': open1, open2 = st.columns([0.8, 0.2]) with open1: file_name_input = st.text_input('File Name:', file_name, key='file_name_input', on_change=None) file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area') # Minimal โSaveโ stubs if st.button('๐พ Save File'): with open(file_name_input, 'w', encoding='utf-8') as f: f.write(file_content_area) st.markdown(f'Saved {file_name_input} successfully.') elif next_action == 'search': # Example usage file_content_area = st.text_area("File Contents:", file_contents, height=500) user_prompt = PromptPrefix2 + file_contents st.markdown(user_prompt) if st.button('๐Re-Code'): search_arxiv(file_contents) elif next_action == 'md': st.markdown(file_contents) SpeechSynthesis(file_contents) if st.button('๐Run'): st.write("Running GPT logic placeholder...") # --------------------------- # Basic Scoring / Glossaries # --------------------------- score_dir = "scores" os.makedirs(score_dir, exist_ok=True) def generate_key(label, header, idx): return f"{header}_{label}_{idx}_key" def update_score(key, increment=1): score_file = os.path.join(score_dir, f"{key}.json") if os.path.exists(score_file): with open(score_file, "r") as file: score_data = json.load(file) else: score_data = {"clicks": 0, "score": 0} score_data["clicks"] += increment score_data["score"] += increment with open(score_file, "w") as file: json.dump(score_data, file) return score_data["score"] def load_score(key): score_file = os.path.join(score_dir, f"{key}.json") if os.path.exists(score_file): with open(score_file, "r") as file: score_data = json.load(file) return score_data["score"] return 0 def display_buttons_with_scores(num_columns_text): """ Show buttons that track a 'score' from your glossary data. """ game_emojis = { "Dungeons and Dragons": "๐", "Call of Cthulhu": "๐", "GURPS": "๐ฒ", "Pathfinder": "๐บ๏ธ", "Kindred of the East": "๐ ", "Changeling": "๐", } topic_emojis = { "Core Rulebooks": "๐", "Maps & Settings": "๐บ๏ธ", "Game Mechanics & Tools": "โ๏ธ", "Monsters & Adversaries": "๐น", "Campaigns & Adventures": "๐", "Creatives & Assets": "๐จ", "Game Master Resources": "๐ ๏ธ", "Lore & Background": "๐", "Character Development": "๐ง", "Homebrew Content": "๐ง", "General Topics": "๐", } for category, games in roleplaying_glossary.items(): category_emoji = topic_emojis.get(category, "๐") st.markdown(f"## {category_emoji} {category}") for game, terms in games.items(): game_emoji = game_emojis.get(game, "๐ฎ") for term in terms: key = f"{category}_{game}_{term}".replace(' ', '_').lower() score = load_score(key) if st.button(f"{game_emoji} {category} {game} {term} {score}", key=key): newscore = update_score(key.replace('?','')) st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}") # -------------------- # Image & Video Grids # -------------------- def display_images_and_wikipedia_summaries(num_columns=4): """ Display all .png images in the current directory in a grid, referencing the name as a 'keyword'. """ image_files = [f for f in os.listdir('.') if f.endswith('.png')] if not image_files: st.write("No PNG images found in the current directory.") return # Sort by length of filename, just as an example image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0])) cols = st.columns(num_columns) col_index = 0 for image_file in image_files_sorted: with cols[col_index % num_columns]: try: image = Image.open(image_file) st.image(image, use_column_width=True) k = image_file.split('.')[0] display_glossary_entity(k) # Provide a text input for user interactions image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}") if len(image_text_input) > 0: response = process_image(image_file, image_text_input) st.markdown(response) except: st.write(f"Could not open {image_file}") col_index += 1 def display_videos_and_links(num_columns=4): """ Displays all .mp4 or .webm videos found in the current directory in a grid. """ video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))] if not video_files: st.write("No MP4 or WEBM videos found in the current directory.") return video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0])) cols = st.columns(num_columns) col_index = 0 for video_file in video_files_sorted: with cols[col_index % num_columns]: k = video_file.split('.')[0] st.video(video_file, format='video/mp4', start_time=0) display_glossary_entity(k) # Provide a text input video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}") if video_text_input: try: # Hard-coded example seconds_per_frame = 10 process_video(video_file, seconds_per_frame) except ValueError: st.error("Invalid input for seconds per frame!") col_index += 1 # ------------------------------------- # Query Param Helpers from your snippet # ------------------------------------- def get_all_query_params(key): return st.query_params().get(key, []) def clear_query_params(): st.query_params() def display_content_or_image(query): """ If a query matches something in transhuman_glossary or a local image, show it. Otherwise warn no match. """ for category, term_list in transhuman_glossary.items(): for term in term_list: if query.lower() in term.lower(): st.subheader(f"Found in {category}:") st.write(term) return True image_path = f"images/{query}.png" if os.path.exists(image_path): st.image(image_path, caption=f"Image for {query}") return True st.warning("No matching content or image found.") return False # ------------------------------------ # MERMAID DIAGRAM with Clickable Links # ------------------------------------ def generate_mermaid_html(mermaid_code: str) -> str: """ Returns HTML embedding a Mermaid diagram. We embed the code in