File size: 11,853 Bytes
1a9386d
 
728b90c
1a9386d
 
 
 
f7c75cd
 
fd10bb7
1a9386d
 
 
f7c75cd
1a9386d
 
98b31df
1a9386d
f7c75cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d54eb71
f7c75cd
d54eb71
 
f7c75cd
d54eb71
f7c75cd
 
 
 
 
 
 
 
 
 
 
d54eb71
1a9386d
 
f7c75cd
1a9386d
f7c75cd
 
 
 
 
 
fd10bb7
1a9386d
f7c75cd
fd44629
1a9386d
f7c75cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a9386d
 
 
f7c75cd
d7cecbd
1a9386d
 
 
d7cecbd
1a9386d
d7cecbd
 
 
 
 
1a9386d
f7c75cd
 
 
 
 
1a9386d
e4a7d86
fc09229
f7c75cd
e4a7d86
 
 
 
 
 
 
 
fc09229
e4a7d86
 
 
f7c75cd
 
 
 
 
 
b866d44
 
 
 
 
 
 
d907b5f
 
 
 
 
 
 
b866d44
d907b5f
 
 
 
 
 
 
 
 
 
b866d44
d907b5f
 
 
 
 
 
 
 
 
 
 
b866d44
d907b5f
 
03a6218
b866d44
 
f7c75cd
b866d44
 
 
e4a7d86
 
 
 
b866d44
f7c75cd
 
 
 
 
 
b866d44
 
f7c75cd
b866d44
 
f7c75cd
 
 
 
 
 
1a9386d
 
f7c75cd
1a9386d
 
f7c75cd
 
 
1a9386d
 
 
 
 
 
 
 
03a6218
f7c75cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a9386d
 
f7c75cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import streamlit as st
import openai
from openai import OpenAI
import os
import base64
import cv2
from moviepy.editor import VideoFileClip
import pytz
from datetime import datetime

# Set API key and organization ID from environment variables
openai.api_key = os.getenv('OPENAI_API_KEY')
openai.organization = os.getenv('OPENAI_ORG_ID')
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))

# Define the model to be used
MODEL = "gpt-4o-2024-05-13"

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return
    base_filename, ext = os.path.splitext(filename)
    if ext in ['.txt', '.htm', '.md']:
        with open(f"{base_filename}.md", 'w', encoding='utf-8') as file:
            file.write(response)

def process_text(text_input):
    if text_input:
        st.session_state.messages.append({"role": "user", "content": text_input})
        
        with st.chat_message("user"):
            st.markdown(text_input)
        
        with st.chat_message("assistant"):
            completion = client.chat.completions.create(
                model=MODEL,
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                stream=False
            )
            return_text = completion.choices[0].message.content
            st.write("Assistant: " + return_text)
            filename = generate_filename(text_input, "md")
            create_file(filename, text_input, return_text, should_save=True)
            st.session_state.messages.append({"role": "assistant", "content": return_text})

def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'):
    if text_input:
        st.session_state.messages.append({"role": "user", "content": text_input})
        completion = client.chat.completions.create(
            model=MODEL,
            messages=st.session_state.messages
        )
        return_text = completion.choices[0].message.content
        st.write("Assistant: " + return_text)
        filename = generate_filename(text_input, "md")
        create_file(filename, text_input, return_text, should_save=True)
        return return_text

def save_image(image_input, filename):
    # Save the uploaded image file
    with open(filename, "wb") as f:
        f.write(image_input.getvalue())
    return filename

def process_image(image_input):
    if image_input:
        st.markdown('Processing image:  ' + image_input.name )
        base64_image = base64.b64encode(image_input.read()).decode("utf-8")
        st.session_state.messages.append({"role": "user", "content": [
            {"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."},
            {"type": "image_url", "image_url": {
                "url": f"data:image/png;base64,{base64_image}"}
            }
        ]})
        response = client.chat.completions.create(
            model=MODEL,
            messages=st.session_state.messages,
            temperature=0.0,
        )
        image_response = response.choices[0].message.content
        st.markdown(image_response)
        
        filename_md = generate_filename(image_input.name + '- ' + image_response, "md")
        filename_png = filename_md.replace('.md', '.' + image_input.name.split('.')[-1])
                
        create_file(filename_md, image_response, '', True)

        with open(filename_md, "w", encoding="utf-8") as f:
            f.write(image_response)

        filename_img = image_input.name
        save_image(image_input, filename_img)
        
        st.session_state.messages.append({"role": "assistant", "content": image_response})
        
        return image_response

def process_audio(audio_input):
    if audio_input:
        st.session_state.messages.append({"role": "user", "content": audio_input})
        transcription = client.audio.transcriptions.create(
            model="whisper-1",
            file=audio_input,
        )
        response = client.chat.completions.create(
            model=MODEL,
            messages=[
            {"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
            {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}],}
            ],
            temperature=0,
        )
        audio_response = response.choices[0].message.content
        st.markdown(audio_response)
        filename = generate_filename(transcription.text, "md")
        create_file(filename, transcription.text, audio_response, should_save=True)
        st.session_state.messages.append({"role": "assistant", "content": audio_response})

def process_audio_for_video(video_input):
    if video_input:
        st.session_state.messages.append({"role": "user", "content": video_input})
        transcription = client.audio.transcriptions.create(
            model="whisper-1",
            file=video_input,
        )
        response = client.chat.completions.create(
            model=MODEL,
            messages=[
            {"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
            {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}],}
            ],
            temperature=0,
        )
        video_response = response.choices[0].message.content
        st.markdown(video_response)
        filename = generate_filename(transcription, "md")
        create_file(filename, transcription, video_response, should_save=True)
        st.session_state.messages.append({"role": "assistant", "content": video_response})
        return video_response

def save_video(video_file):
    # Save the uploaded video file
    with open(video_file.name, "wb") as f:
        f.write(video_file.getbuffer())
    return video_file.name

def process_video(video_path, seconds_per_frame=2):
    base64Frames = []
    base_video_path, _ = os.path.splitext(video_path)
    video = cv2.VideoCapture(video_path)
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = video.get(cv2.CAP_PROP_FPS)
    frames_to_skip = int(fps * seconds_per_frame)
    curr_frame = 0

    # Loop through the video and extract frames at specified sampling rate
    while curr_frame < total_frames - 1:
        video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
        success, frame = video.read()
        if not success:
            break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
        curr_frame += frames_to_skip

    video.release()

    # Extract audio from video
    audio_path = f"{base_video_path}.mp3"
    clip = VideoFileClip(video_path)
    clip.audio.write_audiofile(audio_path, bitrate="32k")
    clip.audio.close()
    clip.close()

    print(f"Extracted {len(base64Frames)} frames")
    print(f"Extracted audio to {audio_path}")

    return base64Frames, audio_path

def process_audio_and_video(video_input):
    if video_input is not None:
        # Save the uploaded video file
        video_path = save_video(video_input)
    
        # Process the saved video
        base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)

        # Get the transcript for the video model call
        transcript = process_audio_for_video(video_input)
        
        # Generate a summary with visual and audio
        st.session_state.messages.append({"role": "user", "content": [
            "These are the frames from the video.",
            *map(lambda x: {"type": "image_url",
                            "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
            {"type": "text", "text": f"The audio transcription is: {transcript}"}
        ]})
        response = client.chat.completions.create(
            model=MODEL,
            messages=st.session_state.messages,
            temperature=0,
        )
        video_response = response.choices[0].message.content
        st.markdown(video_response) 
        
        filename = generate_filename(transcript, "md")
        create_file(filename, transcript, video_response, should_save=True)
        st.session_state.messages.append({"role": "assistant", "content": video_response})

def main():
    st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video")
    option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
    if option == "Text":
        text_input = st.text_input("Enter your text:")
        if text_input:
            process_text(text_input)
    elif option == "Image":
        image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
        process_image(image_input)
    elif option == "Audio":
        audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
        process_audio(audio_input)
    elif option == "Video":
        video_input = st.file_uploader("Upload a video file", type=["mp4"])
        process_audio_and_video(video_input)
    
    # File Gallery
    all_files = glob.glob("*.md")
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]  # exclude files with short names
    all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)  # sort by filename length which puts similar prompts together - consider making date and time of file optional.
    
    st.sidebar.title("File Gallery")
    for file in all_files:
        with st.sidebar.expander(file):
            with open(file, "r", encoding="utf-8") as f:
                file_content = f.read()
            st.code(file_content, language="markdown")
    
    # ChatBot Entry 
    if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)
        with st.chat_message("assistant"):
            completion = client.chat.completions.create(
                model=MODEL,
                messages=st.session_state.messages,
                stream=True
            )
            response = process_text2(text_input=prompt)
        st.session_state.messages.append({"role": "assistant", "content": response})

    # Transcript to arxiv and client chat completion
    filename = save_and_play_audio(audio_recorder)
    if filename is not None:
        transcript = transcribe_canary(filename)

        # Search ArXiV and get the Summary and Reference Papers Listing
        result = search_arxiv(transcript)

        # Start chatbot with transcript:
        st.session_state.messages.append({"role": "user", "content": transcript})
        with st.chat_message("user"):
            st.markdown(transcript)
        with st.chat_message("assistant"):
            completion = client.chat.completions.create(
                model=MODEL,
                messages=st.session_state.messages,
                stream=True
            )
            response = process_text2(text_input=prompt)
        st.session_state.messages.append({"role": "assistant", "content": response})

if __name__ == "__main__":
    main()