File size: 5,112 Bytes
1a9386d
 
728b90c
1a9386d
 
 
 
 
fd10bb7
 
 
 
 
 
1a9386d
 
 
98b31df
1a9386d
 
98b31df
 
1a9386d
 
d54eb71
 
 
 
 
 
 
 
 
 
 
1a9386d
 
 
fd10bb7
1a9386d
fd44629
 
 
 
 
 
 
 
 
 
1a9386d
fd44629
1a9386d
 
 
 
 
 
 
19b3cb0
1a9386d
19b3cb0
 
 
1a9386d
19b3cb0
1a9386d
 
 
 
 
 
 
 
19b3cb0
 
1a9386d
19b3cb0
 
 
1a9386d
19b3cb0
1a9386d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c24d62
 
1a9386d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import streamlit as st
import openai
from openai import OpenAI
import os
import base64
import cv2
from moviepy.editor import VideoFileClip

# documentation
# 1. Cookbook:  https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o
# 2. Configure your Project and Orgs to limit/allow Models:  https://platform.openai.com/settings/organization/general
# 3. Watch your Billing!  https://platform.openai.com/settings/organization/billing/overview


# Set API key and organization ID from environment variables
openai.api_key = os.getenv('OPENAI_API_KEY')
openai.organization = os.getenv('OPENAI_ORG_ID')
client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))

# Define the model to be used
#MODEL = "gpt-4o"
MODEL = "gpt-4o-2024-05-13"

def process_text():
    text_input = st.text_input("Enter your text:")
    if text_input:
        completion = client.chat.completions.create(
            model=MODEL,
            messages=[
                {"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"},
                {"role": "user", "content": f"Hello! Could you solve {text_input}?"}
            ]
        )
        st.write("Assistant: " + completion.choices[0].message.content)

def process_image(image_input):
    if image_input:
        base64_image = base64.b64encode(image_input.read()).decode("utf-8")
        response = client.chat.completions.create(
            model=MODEL,
            messages=[
                {"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
                {"role": "user", "content": [
                    {"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."},
                    {"type": "image_url", "image_url": {
                        "url": f"data:image/png;base64,{base64_image}"}
                    }
                ]}
            ],
            temperature=0.0,
        )
        st.markdown(response.message.content)

def process_audio(audio_input):
    if audio_input:
        transcription = openai.Audio.transcriptions.create(
            model="whisper-1",
            file=audio_input,
        )
        response = openai.Completion.create(
            model=MODEL,
            prompt=f"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown. The audio transcription is: {transcription['text']}",
            max_tokens=100,
            temperature=0.5,
        )
        st.markdown(response.choices[0].text.strip())

def process_video(video_input):
    if video_input:
        base64Frames, audio_path = process_video_frames(video_input)
        transcription = openai.Audio.transcriptions.create(
            model="whisper-1",
            file=open(audio_path, "rb"),
        )
        frames_text = " ".join([f"[image: data:image/jpg;base64,{frame}]" for frame in base64Frames])
        response = openai.Completion.create(
            model=MODEL,
            prompt=f"You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown. These are the frames from the video. {frames_text} The audio transcription is: {transcription['text']}",
            max_tokens=500,
            temperature=0.5,
        )
        st.markdown(response.choices[0].text.strip())

def process_video_frames(video_path, seconds_per_frame=2):
    base64Frames = []
    base_video_path, _ = os.path.splitext(video_path.name)
    video = cv2.VideoCapture(video_path.name)
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = video.get(cv2.CAP_PROP_FPS)
    frames_to_skip = int(fps * seconds_per_frame)
    curr_frame = 0
    while curr_frame < total_frames - 1:
        video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
        success, frame = video.read()
        if not success:
            break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
        curr_frame += frames_to_skip
    video.release()
    audio_path = f"{base_video_path}.mp3"
    clip = VideoFileClip(video_path.name)
    clip.audio.write_audiofile(audio_path, bitrate="32k")
    clip.audio.close()
    clip.close()
    return base64Frames, audio_path

def main():
    st.markdown("### OpenAI GPT-4o Model")
    st.markdown("#### The Omni Model with Text, Audio, Image, and Video")
    option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
    if option == "Text":
        process_text()
    elif option == "Image":
        image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
        process_image(image_input)
    elif option == "Audio":
        audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
        process_audio(audio_input)
    elif option == "Video":
        video_input = st.file_uploader("Upload a video file", type=["mp4"])
        process_video(video_input)

if __name__ == "__main__":
    main()