|
import streamlit as st |
|
import openai |
|
from openai import OpenAI |
|
import os |
|
import base64 |
|
import cv2 |
|
from moviepy.editor import VideoFileClip |
|
import pytz |
|
from datetime import datetime |
|
import glob |
|
from audio_recorder_streamlit import audio_recorder |
|
|
|
|
|
openai.api_key = os.getenv('OPENAI_API_KEY') |
|
openai.organization = os.getenv('OPENAI_ORG_ID') |
|
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) |
|
|
|
|
|
MODEL = "gpt-4o-2024-05-13" |
|
|
|
def generate_filename(prompt, file_type): |
|
central = pytz.timezone('US/Central') |
|
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") |
|
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") |
|
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] |
|
return f"{safe_date_time}_{safe_prompt}.{file_type}" |
|
|
|
def create_file(filename, prompt, response, should_save=True): |
|
if not should_save: |
|
return |
|
base_filename, ext = os.path.splitext(filename) |
|
if ext in ['.txt', '.htm', '.md']: |
|
with open(f"{base_filename}.md", 'w', encoding='utf-8') as file: |
|
file.write(response) |
|
|
|
def process_text(text_input): |
|
if text_input: |
|
st.session_state.messages.append({"role": "user", "content": text_input}) |
|
|
|
with st.chat_message("user"): |
|
st.markdown(text_input) |
|
|
|
with st.chat_message("assistant"): |
|
completion = client.chat.completions.create( |
|
model=MODEL, |
|
messages=[ |
|
{"role": m["role"], "content": m["content"]} |
|
for m in st.session_state.messages |
|
], |
|
stream=False |
|
) |
|
return_text = completion.choices[0].message.content |
|
st.write("Assistant: " + return_text) |
|
filename = generate_filename(text_input, "md") |
|
create_file(filename, text_input, return_text, should_save=True) |
|
st.session_state.messages.append({"role": "assistant", "content": return_text}) |
|
|
|
def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'): |
|
if text_input: |
|
st.session_state.messages.append({"role": "user", "content": text_input}) |
|
completion = client.chat.completions.create( |
|
model=MODEL, |
|
messages=st.session_state.messages |
|
) |
|
return_text = completion.choices[0].message.content |
|
st.write("Assistant: " + return_text) |
|
filename = generate_filename(text_input, "md") |
|
create_file(filename, text_input, return_text, should_save=True) |
|
return return_text |
|
|
|
def save_image(image_input, filename): |
|
|
|
with open(filename, "wb") as f: |
|
f.write(image_input.getvalue()) |
|
return filename |
|
|
|
def process_image(image_input): |
|
if image_input: |
|
st.markdown('Processing image: ' + image_input.name ) |
|
base64_image = base64.b64encode(image_input.read()).decode("utf-8") |
|
st.session_state.messages.append({"role": "user", "content": [ |
|
{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, |
|
{"type": "image_url", "image_url": { |
|
"url": f"data:image/png;base64,{base64_image}"} |
|
} |
|
]}) |
|
response = client.chat.completions.create( |
|
model=MODEL, |
|
messages=st.session_state.messages, |
|
temperature=0.0, |
|
) |
|
image_response = response.choices[0].message.content |
|
st.markdown(image_response) |
|
|
|
filename_md = generate_filename(image_input.name + '- ' + image_response, "md") |
|
filename_png = filename_md.replace('.md', '.' + image_input.name.split('.')[-1]) |
|
|
|
create_file(filename_md, image_response, '', True) |
|
|
|
with open(filename_md, "w", encoding="utf-8") as f: |
|
f.write(image_response) |
|
|
|
filename_img = image_input.name |
|
save_image(image_input, filename_img) |
|
|
|
st.session_state.messages.append({"role": "assistant", "content": image_response}) |
|
|
|
return image_response |
|
|
|
def process_audio(audio_input): |
|
if audio_input: |
|
st.session_state.messages.append({"role": "user", "content": audio_input}) |
|
transcription = client.audio.transcriptions.create( |
|
model="whisper-1", |
|
file=audio_input, |
|
) |
|
response = client.chat.completions.create( |
|
model=MODEL, |
|
messages=[ |
|
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""}, |
|
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}],} |
|
], |
|
temperature=0, |
|
) |
|
audio_response = response.choices[0].message.content |
|
st.markdown(audio_response) |
|
filename = generate_filename(transcription.text, "md") |
|
create_file(filename, transcription.text, audio_response, should_save=True) |
|
st.session_state.messages.append({"role": "assistant", "content": audio_response}) |
|
|
|
def process_audio_for_video(video_input): |
|
if video_input: |
|
st.session_state.messages.append({"role": "user", "content": video_input}) |
|
transcription = client.audio.transcriptions.create( |
|
model="whisper-1", |
|
file=video_input, |
|
) |
|
response = client.chat.completions.create( |
|
model=MODEL, |
|
messages=[ |
|
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""}, |
|
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}],} |
|
], |
|
temperature=0, |
|
) |
|
video_response = response.choices[0].message.content |
|
st.markdown(video_response) |
|
filename = generate_filename(transcription, "md") |
|
create_file(filename, transcription, video_response, should_save=True) |
|
st.session_state.messages.append({"role": "assistant", "content": video_response}) |
|
return video_response |
|
|
|
def save_video(video_file): |
|
|
|
with open(video_file.name, "wb") as f: |
|
f.write(video_file.getbuffer()) |
|
return video_file.name |
|
|
|
def process_video(video_path, seconds_per_frame=2): |
|
base64Frames = [] |
|
base_video_path, _ = os.path.splitext(video_path) |
|
video = cv2.VideoCapture(video_path) |
|
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
frames_to_skip = int(fps * seconds_per_frame) |
|
curr_frame = 0 |
|
|
|
|
|
while curr_frame < total_frames - 1: |
|
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) |
|
success, frame = video.read() |
|
if not success: |
|
break |
|
_, buffer = cv2.imencode(".jpg", frame) |
|
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) |
|
curr_frame += frames_to_skip |
|
|
|
video.release() |
|
|
|
|
|
audio_path = f"{base_video_path}.mp3" |
|
clip = VideoFileClip(video_path) |
|
clip.audio.write_audiofile(audio_path, bitrate="32k") |
|
clip.audio.close() |
|
clip.close() |
|
|
|
print(f"Extracted {len(base64Frames)} frames") |
|
print(f"Extracted audio to {audio_path}") |
|
|
|
return base64Frames, audio_path |
|
|
|
def save_and_play_audio(audio_recorder): |
|
audio_bytes = audio_recorder(key='audio_recorder') |
|
if audio_bytes: |
|
filename = generate_filename("Recording", "wav") |
|
with open(filename, 'wb') as f: |
|
f.write(audio_bytes) |
|
st.audio(audio_bytes, format="audio/wav") |
|
return filename |
|
return None |
|
|
|
def process_audio_and_video(video_input): |
|
if video_input is not None: |
|
|
|
video_path = save_video(video_input) |
|
|
|
|
|
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1) |
|
|
|
|
|
transcript = process_audio_for_video(video_input) |
|
|
|
|
|
st.session_state.messages.append({"role": "user", "content": [ |
|
"These are the frames from the video.", |
|
*map(lambda x: {"type": "image_url", |
|
"image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), |
|
{"type": "text", "text": f"The audio transcription is: {transcript}"} |
|
]}) |
|
response = client.chat.completions.create( |
|
model=MODEL, |
|
messages=st.session_state.messages, |
|
temperature=0, |
|
) |
|
video_response = response.choices[0].message.content |
|
st.markdown(video_response) |
|
|
|
filename = generate_filename(transcript, "md") |
|
create_file(filename, transcript, video_response, should_save=True) |
|
st.session_state.messages.append({"role": "assistant", "content": video_response}) |
|
|
|
def main(): |
|
st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video") |
|
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video")) |
|
if option == "Text": |
|
text_input = st.text_input("Enter your text:") |
|
if text_input: |
|
process_text(text_input) |
|
elif option == "Image": |
|
image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) |
|
process_image(image_input) |
|
elif option == "Audio": |
|
audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"]) |
|
process_audio(audio_input) |
|
elif option == "Video": |
|
video_input = st.file_uploader("Upload a video file", type=["mp4"]) |
|
process_audio_and_video(video_input) |
|
|
|
|
|
all_files = glob.glob("*.md") |
|
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] |
|
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) |
|
|
|
st.sidebar.title("File Gallery") |
|
for file in all_files: |
|
with st.sidebar.expander(file): |
|
with open(file, "r", encoding="utf-8") as f: |
|
file_content = f.read() |
|
st.code(file_content, language="markdown") |
|
|
|
|
|
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
with st.chat_message("assistant"): |
|
completion = client.chat.completions.create( |
|
model=MODEL, |
|
messages=st.session_state.messages, |
|
stream=True |
|
) |
|
response = process_text2(text_input=prompt) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
|
|
|
|
filename = save_and_play_audio(audio_recorder) |
|
if filename is not None: |
|
transcript = transcribe_canary(filename) |
|
|
|
|
|
result = search_arxiv(transcript) |
|
|
|
|
|
st.session_state.messages.append({"role": "user", "content": transcript}) |
|
with st.chat_message("user"): |
|
st.markdown(transcript) |
|
with st.chat_message("assistant"): |
|
completion = client.chat.completions.create( |
|
model=MODEL, |
|
messages=st.session_state.messages, |
|
stream=True |
|
) |
|
response = process_text2(text_input=prompt) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
|
|
if __name__ == "__main__": |
|
main() |