awacke1's picture
Update app.py
2899a5e verified
raw
history blame
10.6 kB
import streamlit as st
import openai
from openai import OpenAI
import os, base64, cv2, glob
from moviepy.editor import VideoFileClip
from datetime import datetime
import pytz
from audio_recorder_streamlit import audio_recorder
openai.api_key, openai.organization = os.getenv('OPENAI_API_KEY'), os.getenv('OPENAI_ORG_ID')
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
MODEL = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
st.session_state.messages = []
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
safe_prompt = "".join(x for x in prompt.replace(" ", "_").replace("\n", "_") if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def create_file(filename, prompt, response, should_save=True):
if should_save and os.path.splitext(filename)[1] in ['.txt', '.htm', '.md']:
with open(os.path.splitext(filename)[0] + ".md", 'w', encoding='utf-8') as file:
file.write(response)
def process_text(text_input):
if text_input:
st.session_state.messages.append({"role": "user", "content": text_input})
with st.chat_message("user"):
st.markdown(text_input)
completion = client.chat.completions.create(model=MODEL, messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False)
return_text = completion.choices[0].message.content
with st.chat_message("assistant"):
st.markdown(return_text)
filename = generate_filename(text_input, "md")
create_file(filename, text_input, return_text)
st.session_state.messages.append({"role": "assistant", "content": return_text})
def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'):
if text_input:
st.session_state.messages.append({"role": "user", "content": text_input})
completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages)
return_text = completion.choices[0].message.content
st.write("Assistant: " + return_text)
filename = generate_filename(text_input, "md")
create_file(filename, text_input, return_text, should_save=True)
return return_text
def save_image(image_input, filename):
with open(filename, "wb") as f:
f.write(image_input.getvalue())
return filename
def process_image(image_input):
if image_input:
with st.chat_message("user"):
st.markdown('Processing image: ' + image_input.name)
base64_image = base64.b64encode(image_input.read()).decode("utf-8")
st.session_state.messages.append({"role": "user", "content": [{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}]})
response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0.0)
image_response = response.choices[0].message.content
with st.chat_message("assistant"):
st.markdown(image_response)
filename_md, filename_img = generate_filename(image_input.name + '- ' + image_response, "md"), image_input.name
create_file(filename_md, image_response, '', True)
with open(filename_md, "w", encoding="utf-8") as f:
f.write(image_response)
save_image(image_input, filename_img)
st.session_state.messages.append({"role": "assistant", "content": image_response})
return image_response
def process_audio(audio_input):
if audio_input:
st.session_state.messages.append({"role": "user", "content": audio_input})
transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input)
response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}]}], temperature=0)
audio_response = response.choices[0].message.content
with st.chat_message("assistant"):
st.markdown(audio_response)
filename = generate_filename(transcription.text, "md")
create_file(filename, transcription.text, audio_response, should_save=True)
st.session_state.messages.append({"role": "assistant", "content": audio_response})
def process_audio_and_video(video_input):
if video_input is not None:
video_path = save_video(video_input)
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
transcript = process_audio_for_video(video_input)
st.session_state.messages.append({"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcript}"}]})
response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0)
video_response = response.choices[0].message.content
with st.chat_message("assistant"):
st.markdown(video_response)
filename = generate_filename(transcript, "md")
create_file(filename, transcript, video_response, should_save=True)
st.session_state.messages.append({"role": "assistant", "content": video_response})
def process_audio_for_video(video_input):
if video_input:
st.session_state.messages.append({"role": "user", "content": video_input})
transcription = client.audio.transcriptions.create(model="whisper-1", file=video_input)
response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}]}], temperature=0)
video_response = response.choices[0].message.content
with st.chat_message("assistant"):
st.markdown(video_response)
filename = generate_filename(transcription, "md")
create_file(filename, transcription, video_response, should_save=True)
st.session_state.messages.append({"role": "assistant", "content": video_response})
return video_response
def save_video(video_file):
with open(video_file.name, "wb") as f:
f.write(video_file.getbuffer())
return video_file.name
def process_video(video_path, seconds_per_frame=2):
base64Frames, base_video_path = [], os.path.splitext(video_path)[0]
video, total_frames, fps = cv2.VideoCapture(video_path), int(cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FRAME_COUNT)), cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FPS)
curr_frame, frames_to_skip = 0, int(fps * seconds_per_frame)
while curr_frame < total_frames - 1:
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
success, frame = video.read()
if not success: break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
video.release()
audio_path = f"{base_video_path}.mp3"
clip = VideoFileClip(video_path)
clip.audio.write_audiofile(audio_path, bitrate="32k")
clip.audio.close()
clip.close()
print(f"Extracted {len(base64Frames)} frames")
print(f"Extracted audio to {audio_path}")
return base64Frames, audio_path
def save_and_play_audio(audio_recorder):
audio_bytes = audio_recorder(key='audio_recorder')
if audio_bytes:
filename = generate_filename("Recording", "wav")
with open(filename, 'wb') as f:
f.write(audio_bytes)
st.audio(audio_bytes, format="audio/wav")
return filename
return None
def main():
st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video")
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
if option == "Text":
text_input = st.chat_input("Enter your text:")
if text_input:
process_text(text_input)
elif option == "Image":
image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
process_image(image_input)
elif option == "Audio":
audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
process_audio(audio_input)
elif option == "Video":
video_input = st.file_uploader("Upload a video file", type=["mp4"])
process_audio_and_video(video_input)
all_files = sorted(glob.glob("*.md"), key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]
st.sidebar.title("File Gallery")
for file in all_files:
with st.sidebar.expander(file), open(file, "r", encoding="utf-8") as f:
st.code(f.read(), language="markdown")
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
response = process_text2(text_input=prompt)
st.session_state.messages.append({"role": "assistant", "content": response})
filename = save_and_play_audio(audio_recorder)
if filename is not None:
transcript = transcribe_canary(filename)
result = search_arxiv(transcript)
st.session_state.messages.append({"role": "user", "content": transcript})
with st.chat_message("user"):
st.markdown(transcript)
with st.chat_message("assistant"):
completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
response = process_text2(text_input=prompt)
st.session_state.messages.append({"role": "assistant", "content": response})
if __name__ == "__main__":
main()