|
import streamlit as st |
|
import openai |
|
from openai import OpenAI |
|
import os |
|
import base64 |
|
import cv2 |
|
from moviepy.editor import VideoFileClip |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
openai.api_key = os.getenv('OPENAI_API_KEY') |
|
openai.organization = os.getenv('OPENAI_ORG_ID') |
|
client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) |
|
|
|
|
|
|
|
MODEL = "gpt-4o-2024-05-13" |
|
|
|
def process_text(): |
|
text_input = st.text_input("Enter your text:") |
|
if text_input: |
|
completion = client.chat.completions.create( |
|
model=MODEL, |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"}, |
|
{"role": "user", "content": f"Hello! Could you solve {text_input}?"} |
|
] |
|
) |
|
st.write("Assistant: " + completion.choices[0].message.content) |
|
|
|
def process_image(image_input): |
|
if image_input: |
|
base64_image = base64.b64encode(image_input.read()).decode("utf-8") |
|
response = client.chat.completions.create( |
|
model=MODEL, |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."}, |
|
{"role": "user", "content": [ |
|
{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, |
|
{"type": "image_url", "image_url": { |
|
"url": f"data:image/png;base64,{base64_image}"} |
|
} |
|
]} |
|
], |
|
temperature=0.0, |
|
) |
|
st.markdown(response.choices[0].message.content) |
|
|
|
def process_audio(audio_input): |
|
if audio_input: |
|
transcription = client.audio.transcriptions.create( |
|
model="whisper-1", |
|
file=audio_input, |
|
) |
|
response = client.chat.completions.create( |
|
model=MODEL, |
|
messages=[ |
|
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""}, |
|
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}],} |
|
], |
|
temperature=0, |
|
) |
|
st.markdown(response.choices[0].message.content) |
|
|
|
def process_audio_for_video(video_input): |
|
if audio_input: |
|
transcription = client.audio.transcriptions.create( |
|
model="whisper-1", |
|
file=video_input, |
|
) |
|
response = client.chat.completions.create( |
|
model=MODEL, |
|
messages=[ |
|
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""}, |
|
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}],} |
|
], |
|
temperature=0, |
|
) |
|
st.markdown(response.choices[0].message.content) |
|
return response.choices[0].message.content |
|
|
|
def save_video(video_file): |
|
|
|
with open(video_file.name, "wb") as f: |
|
f.write(video_file.getbuffer()) |
|
return video_file.name |
|
|
|
def process_video(video_path, seconds_per_frame=2): |
|
base64Frames = [] |
|
base_video_path, _ = os.path.splitext(video_path) |
|
video = cv2.VideoCapture(video_path) |
|
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
frames_to_skip = int(fps * seconds_per_frame) |
|
curr_frame = 0 |
|
|
|
|
|
while curr_frame < total_frames - 1: |
|
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) |
|
success, frame = video.read() |
|
if not success: |
|
break |
|
_, buffer = cv2.imencode(".jpg", frame) |
|
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) |
|
curr_frame += frames_to_skip |
|
|
|
video.release() |
|
|
|
|
|
audio_path = f"{base_video_path}.mp3" |
|
clip = VideoFileClip(video_path) |
|
clip.audio.write_audiofile(audio_path, bitrate="32k") |
|
clip.audio.close() |
|
clip.close() |
|
|
|
print(f"Extracted {len(base64Frames)} frames") |
|
print(f"Extracted audio to {audio_path}") |
|
|
|
return base64Frames, audio_path |
|
|
|
def process_audio_and_video(video_input): |
|
if video_input is not None: |
|
|
|
video_path = save_video(video_input ) |
|
|
|
|
|
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1) |
|
|
|
|
|
transcript = process_audio_for_video(video_input) |
|
|
|
|
|
response = client.chat.completions.create( |
|
model=MODEL, |
|
messages=[ |
|
{"role": "system", "content": """You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"""}, |
|
{"role": "user", "content": [ |
|
"These are the frames from the video.", |
|
*map(lambda x: {"type": "image_url", |
|
"image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), |
|
{"type": "text", "text": f"The audio transcription is: {transcript}"} |
|
]}, |
|
], |
|
temperature=0, |
|
) |
|
|
|
st.markdown(response.choices[0].message.content) |
|
|
|
|
|
def main(): |
|
st.markdown("### OpenAI GPT-4o Model") |
|
st.markdown("#### The Omni Model with Text, Audio, Image, and Video") |
|
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video")) |
|
if option == "Text": |
|
process_text() |
|
elif option == "Image": |
|
image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) |
|
process_image(image_input) |
|
elif option == "Audio": |
|
audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"]) |
|
process_audio(audio_input) |
|
elif option == "Video": |
|
video_input = st.file_uploader("Upload a video file", type=["mp4"]) |
|
process_audio_and_video(video_input) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|