awacke1 commited on
Commit
901d428
·
verified ·
1 Parent(s): 2899a5e

Create backup-addedchat-app.py

Browse files
Files changed (1) hide show
  1. backup-addedchat-app.py +196 -0
backup-addedchat-app.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import openai
3
+ from openai import OpenAI
4
+ import os, base64, cv2, glob
5
+ from moviepy.editor import VideoFileClip
6
+ from datetime import datetime
7
+ import pytz
8
+ from audio_recorder_streamlit import audio_recorder
9
+
10
+ openai.api_key, openai.organization = os.getenv('OPENAI_API_KEY'), os.getenv('OPENAI_ORG_ID')
11
+ client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
12
+
13
+ MODEL = "gpt-4o-2024-05-13"
14
+
15
+ if 'messages' not in st.session_state:
16
+ st.session_state.messages = []
17
+
18
+ def generate_filename(prompt, file_type):
19
+ central = pytz.timezone('US/Central')
20
+ safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
21
+ safe_prompt = "".join(x for x in prompt.replace(" ", "_").replace("\n", "_") if x.isalnum() or x == "_")[:90]
22
+ return f"{safe_date_time}_{safe_prompt}.{file_type}"
23
+
24
+ def create_file(filename, prompt, response, should_save=True):
25
+ if should_save and os.path.splitext(filename)[1] in ['.txt', '.htm', '.md']:
26
+ with open(os.path.splitext(filename)[0] + ".md", 'w', encoding='utf-8') as file:
27
+ file.write(response)
28
+
29
+ def process_text(text_input):
30
+ if text_input:
31
+ st.session_state.messages.append({"role": "user", "content": text_input})
32
+ with st.chat_message("user"):
33
+ st.markdown(text_input)
34
+ completion = client.chat.completions.create(model=MODEL, messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False)
35
+ return_text = completion.choices[0].message.content
36
+ with st.chat_message("assistant"):
37
+ st.markdown(return_text)
38
+ filename = generate_filename(text_input, "md")
39
+ create_file(filename, text_input, return_text)
40
+ st.session_state.messages.append({"role": "assistant", "content": return_text})
41
+
42
+ def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'):
43
+ if text_input:
44
+ st.session_state.messages.append({"role": "user", "content": text_input})
45
+ completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages)
46
+ return_text = completion.choices[0].message.content
47
+ st.write("Assistant: " + return_text)
48
+ filename = generate_filename(text_input, "md")
49
+ create_file(filename, text_input, return_text, should_save=True)
50
+ return return_text
51
+
52
+ def save_image(image_input, filename):
53
+ with open(filename, "wb") as f:
54
+ f.write(image_input.getvalue())
55
+ return filename
56
+
57
+ def process_image(image_input):
58
+ if image_input:
59
+ with st.chat_message("user"):
60
+ st.markdown('Processing image: ' + image_input.name)
61
+ base64_image = base64.b64encode(image_input.read()).decode("utf-8")
62
+ st.session_state.messages.append({"role": "user", "content": [{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}]})
63
+ response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0.0)
64
+ image_response = response.choices[0].message.content
65
+ with st.chat_message("assistant"):
66
+ st.markdown(image_response)
67
+ filename_md, filename_img = generate_filename(image_input.name + '- ' + image_response, "md"), image_input.name
68
+ create_file(filename_md, image_response, '', True)
69
+ with open(filename_md, "w", encoding="utf-8") as f:
70
+ f.write(image_response)
71
+ save_image(image_input, filename_img)
72
+ st.session_state.messages.append({"role": "assistant", "content": image_response})
73
+ return image_response
74
+
75
+ def process_audio(audio_input):
76
+ if audio_input:
77
+ st.session_state.messages.append({"role": "user", "content": audio_input})
78
+ transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input)
79
+ response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}]}], temperature=0)
80
+ audio_response = response.choices[0].message.content
81
+ with st.chat_message("assistant"):
82
+ st.markdown(audio_response)
83
+ filename = generate_filename(transcription.text, "md")
84
+ create_file(filename, transcription.text, audio_response, should_save=True)
85
+ st.session_state.messages.append({"role": "assistant", "content": audio_response})
86
+
87
+ def process_audio_and_video(video_input):
88
+ if video_input is not None:
89
+ video_path = save_video(video_input)
90
+ base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
91
+ transcript = process_audio_for_video(video_input)
92
+ st.session_state.messages.append({"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcript}"}]})
93
+ response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0)
94
+ video_response = response.choices[0].message.content
95
+ with st.chat_message("assistant"):
96
+ st.markdown(video_response)
97
+ filename = generate_filename(transcript, "md")
98
+ create_file(filename, transcript, video_response, should_save=True)
99
+ st.session_state.messages.append({"role": "assistant", "content": video_response})
100
+
101
+ def process_audio_for_video(video_input):
102
+ if video_input:
103
+ st.session_state.messages.append({"role": "user", "content": video_input})
104
+ transcription = client.audio.transcriptions.create(model="whisper-1", file=video_input)
105
+ response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}]}], temperature=0)
106
+ video_response = response.choices[0].message.content
107
+ with st.chat_message("assistant"):
108
+ st.markdown(video_response)
109
+ filename = generate_filename(transcription, "md")
110
+ create_file(filename, transcription, video_response, should_save=True)
111
+ st.session_state.messages.append({"role": "assistant", "content": video_response})
112
+ return video_response
113
+
114
+ def save_video(video_file):
115
+ with open(video_file.name, "wb") as f:
116
+ f.write(video_file.getbuffer())
117
+ return video_file.name
118
+
119
+ def process_video(video_path, seconds_per_frame=2):
120
+ base64Frames, base_video_path = [], os.path.splitext(video_path)[0]
121
+ video, total_frames, fps = cv2.VideoCapture(video_path), int(cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FRAME_COUNT)), cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FPS)
122
+ curr_frame, frames_to_skip = 0, int(fps * seconds_per_frame)
123
+ while curr_frame < total_frames - 1:
124
+ video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
125
+ success, frame = video.read()
126
+ if not success: break
127
+ _, buffer = cv2.imencode(".jpg", frame)
128
+ base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
129
+ curr_frame += frames_to_skip
130
+ video.release()
131
+ audio_path = f"{base_video_path}.mp3"
132
+ clip = VideoFileClip(video_path)
133
+ clip.audio.write_audiofile(audio_path, bitrate="32k")
134
+ clip.audio.close()
135
+ clip.close()
136
+ print(f"Extracted {len(base64Frames)} frames")
137
+ print(f"Extracted audio to {audio_path}")
138
+ return base64Frames, audio_path
139
+
140
+ def save_and_play_audio(audio_recorder):
141
+ audio_bytes = audio_recorder(key='audio_recorder')
142
+ if audio_bytes:
143
+ filename = generate_filename("Recording", "wav")
144
+ with open(filename, 'wb') as f:
145
+ f.write(audio_bytes)
146
+ st.audio(audio_bytes, format="audio/wav")
147
+ return filename
148
+ return None
149
+
150
+ def main():
151
+ st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video")
152
+ option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
153
+ if option == "Text":
154
+ text_input = st.chat_input("Enter your text:")
155
+ if text_input:
156
+ process_text(text_input)
157
+ elif option == "Image":
158
+ image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
159
+ process_image(image_input)
160
+ elif option == "Audio":
161
+ audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
162
+ process_audio(audio_input)
163
+ elif option == "Video":
164
+ video_input = st.file_uploader("Upload a video file", type=["mp4"])
165
+ process_audio_and_video(video_input)
166
+
167
+ all_files = sorted(glob.glob("*.md"), key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
168
+ all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]
169
+ st.sidebar.title("File Gallery")
170
+ for file in all_files:
171
+ with st.sidebar.expander(file), open(file, "r", encoding="utf-8") as f:
172
+ st.code(f.read(), language="markdown")
173
+
174
+ if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
175
+ st.session_state.messages.append({"role": "user", "content": prompt})
176
+ with st.chat_message("user"):
177
+ st.markdown(prompt)
178
+ with st.chat_message("assistant"):
179
+ completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
180
+ response = process_text2(text_input=prompt)
181
+ st.session_state.messages.append({"role": "assistant", "content": response})
182
+
183
+ filename = save_and_play_audio(audio_recorder)
184
+ if filename is not None:
185
+ transcript = transcribe_canary(filename)
186
+ result = search_arxiv(transcript)
187
+ st.session_state.messages.append({"role": "user", "content": transcript})
188
+ with st.chat_message("user"):
189
+ st.markdown(transcript)
190
+ with st.chat_message("assistant"):
191
+ completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
192
+ response = process_text2(text_input=prompt)
193
+ st.session_state.messages.append({"role": "assistant", "content": response})
194
+
195
+ if __name__ == "__main__":
196
+ main()