awacke1's picture
Update app.py
12c8e07 verified
import os
import gradio as gr
from transformers import AutoModel, AutoTokenizer
def process_models(model_name, save_dir, additional_models):
log_lines = []
# Process primary model
log_lines.append(f"πŸš€ Loading model: {model_name}")
try:
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model_save_path = os.path.join(save_dir, model_name.replace("/", "_"))
os.makedirs(model_save_path, exist_ok=True)
model.save_pretrained(model_save_path)
log_lines.append(f"βœ… Saved {model_name} to {model_save_path}")
except Exception as e:
log_lines.append(f"❌ Error with {model_name}: {e}")
# Process additional models if any
if additional_models:
for m in additional_models:
log_lines.append(f"πŸš€ Loading model: {m}")
try:
model = AutoModel.from_pretrained(m)
tokenizer = AutoTokenizer.from_pretrained(m)
model_save_path = os.path.join(save_dir, m.replace("/", "_"))
os.makedirs(model_save_path, exist_ok=True)
model.save_pretrained(model_save_path)
log_lines.append(f"βœ… Saved {m} to {model_save_path}")
except Exception as e:
log_lines.append(f"❌ Error with {m}: {e}")
return "\n".join(log_lines)
with gr.Blocks() as demo:
gr.Markdown("# HuggingFace Model Loader & Saver")
gr.Markdown("Load and save HuggingFace models locally using Transformers.")
with gr.Row():
model_name_input = gr.Textbox(label="πŸš€ Model", value="openai-gpt", placeholder="Enter model name")
save_dir_input = gr.Textbox(label="πŸ’Ύ Save Dir", value="./hugging", placeholder="Enter save directory")
additional_models_input = gr.Dropdown(
label="🧩 Additional Models",
choices=["bert-base-uncased", "gpt2", "roberta-base"],
value=[],
multiselect=True,
info="Select additional models"
)
run_button = gr.Button("Load & Save Model")
output_log = gr.Textbox(label="Output Log", lines=10)
run_button.click(
fn=process_models,
inputs=[model_name_input, save_dir_input, additional_models_input],
outputs=output_log
)
if __name__ == "__main__":
# Launch the Gradio app. Hugging Face Spaces will execute this file with python.
demo.launch(server_name="0.0.0.0", server_port=7860)