Spaces:
Runtime error
Runtime error
File size: 14,561 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader, default_collate
from pathlib import Path
from PIL import Image
from scipy.spatial.transform import Rotation
import rembg
from rembg import remove, new_session
from einops import rearrange
from torchvision.transforms import ToTensor, Normalize, Compose, Resize
from torchvision.transforms.functional import to_tensor
from pytorch_lightning import LightningDataModule
from sgm.data.colmap import read_cameras_binary, read_images_binary
from sgm.data.objaverse import video_collate_fn, FLATTEN_FIELDS, flatten_for_video
def qvec2rotmat(qvec):
return np.array(
[
[
1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2],
],
[
2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2,
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1],
],
[
2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2,
],
]
)
def qt2c2w(q, t):
# NOTE: remember to convert to opengl coordinate system
# rot = Rotation.from_quat(q).as_matrix()
rot = qvec2rotmat(q)
c2w = np.eye(4)
c2w[:3, :3] = np.transpose(rot)
c2w[:3, 3] = -np.transpose(rot) @ t
c2w[..., 1:3] *= -1
return c2w
def random_crop():
pass
class MVImageNet(Dataset):
def __init__(
self,
root_dir,
split,
transform,
reso: int = 256,
mask_type: str = "random",
cond_aug_mean=-3.0,
cond_aug_std=0.5,
condition_on_elevation=False,
fps_id=0.0,
motion_bucket_id=300.0,
num_frames: int = 24,
use_mask: bool = True,
load_pixelnerf: bool = False,
scale_pose: bool = False,
max_n_cond: int = 1,
min_n_cond: int = 1,
cond_on_multi: bool = False,
) -> None:
super().__init__()
self.root_dir = Path(root_dir)
self.split = split
avails = self.root_dir.glob("*/*")
self.ids = list(
map(
lambda x: str(x.relative_to(self.root_dir)),
filter(lambda x: x.is_dir(), avails),
)
)
self.transform = transform
self.reso = reso
self.num_frames = num_frames
self.cond_aug_mean = cond_aug_mean
self.cond_aug_std = cond_aug_std
self.condition_on_elevation = condition_on_elevation
self.fps_id = fps_id
self.motion_bucket_id = motion_bucket_id
self.mask_type = mask_type
self.use_mask = use_mask
self.load_pixelnerf = load_pixelnerf
self.scale_pose = scale_pose
self.max_n_cond = max_n_cond
self.min_n_cond = min_n_cond
self.cond_on_multi = cond_on_multi
if self.cond_on_multi:
assert self.min_n_cond == self.max_n_cond
self.session = new_session()
def __getitem__(self, index: int):
# mvimgnet starts with idx==1
idx_list = np.arange(0, self.num_frames)
this_image_dir = self.root_dir / self.ids[index] / "images"
this_camera_dir = self.root_dir / self.ids[index] / "sparse/0"
# while not this_camera_dir.exists():
# index = (index + 1) % len(self.ids)
# this_image_dir = self.root_dir / self.ids[index] / "images"
# this_camera_dir = self.root_dir / self.ids[index] / "sparse/0"
if not this_camera_dir.exists():
index = 0
this_image_dir = self.root_dir / self.ids[index] / "images"
this_camera_dir = self.root_dir / self.ids[index] / "sparse/0"
this_images = read_images_binary(this_camera_dir / "images.bin")
# filenames = list(map(lambda x: f"{x:03d}", this_images.keys()))
filenames = list(this_images.keys())
if len(filenames) == 0:
index = 0
this_image_dir = self.root_dir / self.ids[index] / "images"
this_camera_dir = self.root_dir / self.ids[index] / "sparse/0"
this_images = read_images_binary(this_camera_dir / "images.bin")
# filenames = list(map(lambda x: f"{x:03d}", this_images.keys()))
filenames = list(this_images.keys())
filenames = list(
filter(lambda x: (this_image_dir / this_images[x].name).exists(), filenames)
)
filenames = sorted(filenames, key=lambda x: this_images[x].name)
# # debug
# names = []
# for v in filenames:
# names.append(this_images[v].name)
# breakpoint()
while len(filenames) < self.num_frames:
num_surpass = self.num_frames - len(filenames)
filenames += list(reversed(filenames[-num_surpass:]))
if len(filenames) < self.num_frames:
print(f"\n\n{self.ids[index]}\n\n")
frames = []
cameras = []
downsampled_rgb = []
for view_idx in idx_list:
this_id = filenames[view_idx]
frame = Image.open(this_image_dir / this_images[this_id].name)
w, h = frame.size
if self.mask_type == "random":
image_size = min(h, w)
left = np.random.randint(0, w - image_size + 1)
right = left + image_size
top = np.random.randint(0, h - image_size + 1)
bottom = top + image_size
## need to assign left, right, top, bottom, image_size
elif self.mask_type == "object":
pass
elif self.mask_type == "rembg":
image_size = min(h, w)
if (
cached := this_image_dir
/ f"{this_images[this_id].name[:-4]}_rembg.png"
).exists():
try:
mask = np.asarray(Image.open(cached, formats=["png"]))[..., 3]
except:
mask = remove(frame, session=self.session)
mask.save(cached)
mask = np.asarray(mask)[..., 3]
else:
mask = remove(frame, session=self.session)
mask.save(cached)
mask = np.asarray(mask)[..., 3]
# in h,w order
y, x = np.array(mask.nonzero())
bbox_cx = x.mean()
bbox_cy = y.mean()
if bbox_cy - image_size / 2 < 0:
top = 0
elif bbox_cy + image_size / 2 > h:
top = h - image_size
else:
top = int(bbox_cy - image_size / 2)
if bbox_cx - image_size / 2 < 0:
left = 0
elif bbox_cx + image_size / 2 > w:
left = w - image_size
else:
left = int(bbox_cx - image_size / 2)
# top = max(int(bbox_cy - image_size / 2), 0)
# left = max(int(bbox_cx - image_size / 2), 0)
bottom = top + image_size
right = left + image_size
else:
raise ValueError(f"Unknown mask type: {self.mask_type}")
frame = frame.crop((left, top, right, bottom))
frame = frame.resize((self.reso, self.reso))
frames.append(self.transform(frame))
if self.load_pixelnerf:
# extrinsics
extrinsics = this_images[this_id]
c2w = qt2c2w(extrinsics.qvec, extrinsics.tvec)
# intrinsics
intrinsics = read_cameras_binary(this_camera_dir / "cameras.bin")
assert len(intrinsics) == 1
intrinsics = intrinsics[1]
f, cx, cy, _ = intrinsics.params
f *= 1 / image_size
cx -= left
cy -= top
cx *= 1 / image_size
cy *= 1 / image_size # all are relative values
intrinsics = np.array([[f, 0, cx], [0, f, cy], [0, 0, 1]])
this_camera = np.zeros(25)
this_camera[:16] = c2w.reshape(-1)
this_camera[16:] = intrinsics.reshape(-1)
cameras.append(this_camera)
downsampled = frame.resize((self.reso // 8, self.reso // 8))
downsampled_rgb.append((self.transform(downsampled) + 1.0) * 0.5)
data = dict()
cond_aug = np.exp(
np.random.randn(1)[0] * self.cond_aug_std + self.cond_aug_mean
)
frames = torch.stack(frames)
cond = frames[0]
# setting all things in data
data["frames"] = frames
data["cond_frames_without_noise"] = cond
data["cond_aug"] = torch.as_tensor([cond_aug] * self.num_frames)
data["cond_frames"] = cond + cond_aug * torch.randn_like(cond)
data["fps_id"] = torch.as_tensor([self.fps_id] * self.num_frames)
data["motion_bucket_id"] = torch.as_tensor(
[self.motion_bucket_id] * self.num_frames
)
data["num_video_frames"] = self.num_frames
data["image_only_indicator"] = torch.as_tensor([0.0] * self.num_frames)
if self.load_pixelnerf:
# TODO: normalize camera poses
data["pixelnerf_input"] = dict()
data["pixelnerf_input"]["frames"] = frames
data["pixelnerf_input"]["rgb"] = torch.stack(downsampled_rgb)
cameras = torch.from_numpy(np.stack(cameras)).float()
if self.scale_pose:
c2ws = cameras[..., :16].reshape(-1, 4, 4)
center = c2ws[:, :3, 3].mean(0)
radius = (c2ws[:, :3, 3] - center).norm(dim=-1).max()
scale = 1.5 / radius
c2ws[..., :3, 3] = (c2ws[..., :3, 3] - center) * scale
cameras[..., :16] = c2ws.reshape(-1, 16)
# if self.max_n_cond > 1:
# # TODO implement this
# n_cond = np.random.randint(1, self.max_n_cond + 1)
# # debug
# source_index = [0]
# if n_cond > 1:
# source_index += np.random.choice(
# np.arange(1, self.num_frames),
# self.max_n_cond - 1,
# replace=False,
# ).tolist()
# data["pixelnerf_input"]["source_index"] = torch.as_tensor(
# source_index
# )
# data["pixelnerf_input"]["n_cond"] = n_cond
# data["pixelnerf_input"]["source_images"] = frames[source_index]
# data["pixelnerf_input"]["source_cameras"] = cameras[source_index]
data["pixelnerf_input"]["cameras"] = cameras
return data
def __len__(self):
return len(self.ids)
def collate_fn(self, batch):
# a hack to add source index and keep consistent within a batch
if self.max_n_cond > 1:
# TODO implement this
n_cond = np.random.randint(self.min_n_cond, self.max_n_cond + 1)
# debug
# source_index = [0]
if n_cond > 1:
for b in batch:
source_index = [0] + np.random.choice(
np.arange(1, self.num_frames),
self.max_n_cond - 1,
replace=False,
).tolist()
b["pixelnerf_input"]["source_index"] = torch.as_tensor(source_index)
b["pixelnerf_input"]["n_cond"] = n_cond
b["pixelnerf_input"]["source_images"] = b["frames"][source_index]
b["pixelnerf_input"]["source_cameras"] = b["pixelnerf_input"][
"cameras"
][source_index]
if self.cond_on_multi:
b["cond_frames_without_noise"] = b["frames"][source_index]
ret = video_collate_fn(batch)
if self.cond_on_multi:
ret["cond_frames_without_noise"] = rearrange(ret["cond_frames_without_noise"], "b t ... -> (b t) ...")
return ret
class MVImageNetFixedCond(MVImageNet):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
class MVImageNetDataset(LightningDataModule):
def __init__(
self,
root_dir,
batch_size=2,
shuffle=True,
num_workers=10,
prefetch_factor=2,
**kwargs,
):
super().__init__()
self.batch_size = batch_size
self.num_workers = num_workers
self.prefetch_factor = prefetch_factor
self.shuffle = shuffle
self.transform = Compose(
[
ToTensor(),
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
self.train_dataset = MVImageNet(
root_dir=root_dir,
split="train",
transform=self.transform,
**kwargs,
)
self.test_dataset = MVImageNet(
root_dir=root_dir,
split="test",
transform=self.transform,
**kwargs,
)
def train_dataloader(self):
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0])
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
collate_fn=self.train_dataset.collate_fn,
)
def test_dataloader(self):
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
collate_fn=self.test_dataset.collate_fn,
)
def val_dataloader(self):
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
collate_fn=video_collate_fn,
)
|