Spaces:
Runtime error
Runtime error
""" DPT Model for monocular depth estimation, adopted from https://github1s.com/ashawkey/stable-dreamfusion/blob/HEAD/preprocess_image.py""" | |
import math | |
import types | |
from typing import Any | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from pathlib import Path | |
import timm | |
class BaseModel(torch.nn.Module): | |
def load(self, path): | |
"""Load model from file. | |
Args: | |
path (str): file path | |
""" | |
parameters = torch.load(path, map_location=torch.device("cpu")) | |
if "optimizer" in parameters: | |
parameters = parameters["model"] | |
self.load_state_dict(parameters) | |
def unflatten_with_named_tensor(input, dim, sizes): | |
"""Workaround for unflattening with named tensor.""" | |
# tracer acts up with unflatten. See https://github.com/pytorch/pytorch/issues/49538 | |
new_shape = list(input.shape)[:dim] + list(sizes) + list(input.shape)[dim + 1 :] | |
return input.view(*new_shape) | |
class Slice(nn.Module): | |
def __init__(self, start_index=1): | |
super(Slice, self).__init__() | |
self.start_index = start_index | |
def forward(self, x): | |
return x[:, self.start_index :] | |
class AddReadout(nn.Module): | |
def __init__(self, start_index=1): | |
super(AddReadout, self).__init__() | |
self.start_index = start_index | |
def forward(self, x): | |
if self.start_index == 2: | |
readout = (x[:, 0] + x[:, 1]) / 2 | |
else: | |
readout = x[:, 0] | |
return x[:, self.start_index :] + readout.unsqueeze(1) | |
class ProjectReadout(nn.Module): | |
def __init__(self, in_features, start_index=1): | |
super(ProjectReadout, self).__init__() | |
self.start_index = start_index | |
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU()) | |
def forward(self, x): | |
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :]) | |
features = torch.cat((x[:, self.start_index :], readout), -1) | |
return self.project(features) | |
class Transpose(nn.Module): | |
def __init__(self, dim0, dim1): | |
super(Transpose, self).__init__() | |
self.dim0 = dim0 | |
self.dim1 = dim1 | |
def forward(self, x): | |
x = x.transpose(self.dim0, self.dim1) | |
return x | |
def forward_vit(pretrained, x): | |
b, c, h, w = x.shape | |
glob = pretrained.model.forward_flex(x) | |
layer_1 = pretrained.activations["1"] | |
layer_2 = pretrained.activations["2"] | |
layer_3 = pretrained.activations["3"] | |
layer_4 = pretrained.activations["4"] | |
layer_1 = pretrained.act_postprocess1[0:2](layer_1) | |
layer_2 = pretrained.act_postprocess2[0:2](layer_2) | |
layer_3 = pretrained.act_postprocess3[0:2](layer_3) | |
layer_4 = pretrained.act_postprocess4[0:2](layer_4) | |
unflattened_dim = 2 | |
unflattened_size = ( | |
int(torch.div(h, pretrained.model.patch_size[1], rounding_mode="floor")), | |
int(torch.div(w, pretrained.model.patch_size[0], rounding_mode="floor")), | |
) | |
unflatten = nn.Sequential(nn.Unflatten(unflattened_dim, unflattened_size)) | |
if layer_1.ndim == 3: | |
layer_1 = unflatten(layer_1) | |
if layer_2.ndim == 3: | |
layer_2 = unflatten(layer_2) | |
if layer_3.ndim == 3: | |
layer_3 = unflatten_with_named_tensor( | |
layer_3, unflattened_dim, unflattened_size | |
) | |
if layer_4.ndim == 3: | |
layer_4 = unflatten_with_named_tensor( | |
layer_4, unflattened_dim, unflattened_size | |
) | |
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1) | |
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2) | |
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3) | |
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4) | |
return layer_1, layer_2, layer_3, layer_4 | |
def _resize_pos_embed(self, posemb, gs_h, gs_w): | |
posemb_tok, posemb_grid = ( | |
posemb[:, : self.start_index], | |
posemb[0, self.start_index :], | |
) | |
gs_old = int(math.sqrt(posemb_grid.shape[0])) | |
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) | |
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") | |
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) | |
posemb = torch.cat([posemb_tok, posemb_grid], dim=1) | |
return posemb | |
def forward_flex(self, x): | |
b, c, h, w = x.shape | |
pos_embed = self._resize_pos_embed( | |
self.pos_embed, | |
torch.div(h, self.patch_size[1], rounding_mode="floor"), | |
torch.div(w, self.patch_size[0], rounding_mode="floor"), | |
) | |
B = x.shape[0] | |
if hasattr(self.patch_embed, "backbone"): | |
x = self.patch_embed.backbone(x) | |
if isinstance(x, (list, tuple)): | |
x = x[-1] # last feature if backbone outputs list/tuple of features | |
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) | |
if getattr(self, "dist_token", None) is not None: | |
cls_tokens = self.cls_token.expand( | |
B, -1, -1 | |
) # stole cls_tokens impl from Phil Wang, thanks | |
dist_token = self.dist_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, dist_token, x), dim=1) | |
else: | |
cls_tokens = self.cls_token.expand( | |
B, -1, -1 | |
) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = x + pos_embed | |
x = self.pos_drop(x) | |
for blk in self.blocks: | |
x = blk(x) | |
x = self.norm(x) | |
return x | |
activations = {} | |
def get_activation(name): | |
def hook(model, input, output): | |
activations[name] = output | |
return hook | |
def get_readout_oper(vit_features, features, use_readout, start_index=1): | |
if use_readout == "ignore": | |
readout_oper = [Slice(start_index)] * len(features) | |
elif use_readout == "add": | |
readout_oper = [AddReadout(start_index)] * len(features) | |
elif use_readout == "project": | |
readout_oper = [ | |
ProjectReadout(vit_features, start_index) for out_feat in features | |
] | |
else: | |
assert ( | |
False | |
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'" | |
return readout_oper | |
def _make_vit_b16_backbone( | |
model, | |
features=[96, 192, 384, 768], | |
size=[384, 384], | |
hooks=[2, 5, 8, 11], | |
vit_features=768, | |
use_readout="ignore", | |
start_index=1, | |
): | |
pretrained = nn.Module() | |
pretrained.model = model | |
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) | |
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) | |
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) | |
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) | |
pretrained.activations = activations | |
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) | |
# 32, 48, 136, 384 | |
pretrained.act_postprocess1 = nn.Sequential( | |
readout_oper[0], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[0], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.ConvTranspose2d( | |
in_channels=features[0], | |
out_channels=features[0], | |
kernel_size=4, | |
stride=4, | |
padding=0, | |
bias=True, | |
dilation=1, | |
groups=1, | |
), | |
) | |
pretrained.act_postprocess2 = nn.Sequential( | |
readout_oper[1], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[1], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.ConvTranspose2d( | |
in_channels=features[1], | |
out_channels=features[1], | |
kernel_size=2, | |
stride=2, | |
padding=0, | |
bias=True, | |
dilation=1, | |
groups=1, | |
), | |
) | |
pretrained.act_postprocess3 = nn.Sequential( | |
readout_oper[2], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[2], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
) | |
pretrained.act_postprocess4 = nn.Sequential( | |
readout_oper[3], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[3], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.Conv2d( | |
in_channels=features[3], | |
out_channels=features[3], | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
), | |
) | |
pretrained.model.start_index = start_index | |
pretrained.model.patch_size = [16, 16] | |
# We inject this function into the VisionTransformer instances so that | |
# we can use it with interpolated position embeddings without modifying the library source. | |
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) | |
pretrained.model._resize_pos_embed = types.MethodType( | |
_resize_pos_embed, pretrained.model | |
) | |
return pretrained | |
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None): | |
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) | |
hooks = [5, 11, 17, 23] if hooks == None else hooks | |
return _make_vit_b16_backbone( | |
model, | |
features=[256, 512, 1024, 1024], | |
hooks=hooks, | |
vit_features=1024, | |
use_readout=use_readout, | |
) | |
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None): | |
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) | |
hooks = [2, 5, 8, 11] if hooks == None else hooks | |
return _make_vit_b16_backbone( | |
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout | |
) | |
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None): | |
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained) | |
hooks = [2, 5, 8, 11] if hooks == None else hooks | |
return _make_vit_b16_backbone( | |
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout | |
) | |
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None): | |
model = timm.create_model( | |
"vit_deit_base_distilled_patch16_384", pretrained=pretrained | |
) | |
hooks = [2, 5, 8, 11] if hooks == None else hooks | |
return _make_vit_b16_backbone( | |
model, | |
features=[96, 192, 384, 768], | |
hooks=hooks, | |
use_readout=use_readout, | |
start_index=2, | |
) | |
def _make_vit_b_rn50_backbone( | |
model, | |
features=[256, 512, 768, 768], | |
size=[384, 384], | |
hooks=[0, 1, 8, 11], | |
vit_features=768, | |
use_vit_only=False, | |
use_readout="ignore", | |
start_index=1, | |
): | |
pretrained = nn.Module() | |
pretrained.model = model | |
if use_vit_only == True: | |
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) | |
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) | |
else: | |
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook( | |
get_activation("1") | |
) | |
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook( | |
get_activation("2") | |
) | |
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) | |
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) | |
pretrained.activations = activations | |
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) | |
if use_vit_only == True: | |
pretrained.act_postprocess1 = nn.Sequential( | |
readout_oper[0], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[0], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.ConvTranspose2d( | |
in_channels=features[0], | |
out_channels=features[0], | |
kernel_size=4, | |
stride=4, | |
padding=0, | |
bias=True, | |
dilation=1, | |
groups=1, | |
), | |
) | |
pretrained.act_postprocess2 = nn.Sequential( | |
readout_oper[1], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[1], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.ConvTranspose2d( | |
in_channels=features[1], | |
out_channels=features[1], | |
kernel_size=2, | |
stride=2, | |
padding=0, | |
bias=True, | |
dilation=1, | |
groups=1, | |
), | |
) | |
else: | |
pretrained.act_postprocess1 = nn.Sequential( | |
nn.Identity(), nn.Identity(), nn.Identity() | |
) | |
pretrained.act_postprocess2 = nn.Sequential( | |
nn.Identity(), nn.Identity(), nn.Identity() | |
) | |
pretrained.act_postprocess3 = nn.Sequential( | |
readout_oper[2], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[2], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
) | |
pretrained.act_postprocess4 = nn.Sequential( | |
readout_oper[3], | |
Transpose(1, 2), | |
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), | |
nn.Conv2d( | |
in_channels=vit_features, | |
out_channels=features[3], | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
), | |
nn.Conv2d( | |
in_channels=features[3], | |
out_channels=features[3], | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
), | |
) | |
pretrained.model.start_index = start_index | |
pretrained.model.patch_size = [16, 16] | |
# We inject this function into the VisionTransformer instances so that | |
# we can use it with interpolated position embeddings without modifying the library source. | |
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) | |
# We inject this function into the VisionTransformer instances so that | |
# we can use it with interpolated position embeddings without modifying the library source. | |
pretrained.model._resize_pos_embed = types.MethodType( | |
_resize_pos_embed, pretrained.model | |
) | |
return pretrained | |
def _make_pretrained_vitb_rn50_384( | |
pretrained, use_readout="ignore", hooks=None, use_vit_only=False | |
): | |
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) | |
hooks = [0, 1, 8, 11] if hooks == None else hooks | |
return _make_vit_b_rn50_backbone( | |
model, | |
features=[256, 512, 768, 768], | |
size=[384, 384], | |
hooks=hooks, | |
use_vit_only=use_vit_only, | |
use_readout=use_readout, | |
) | |
def _make_encoder( | |
backbone, | |
features, | |
use_pretrained, | |
groups=1, | |
expand=False, | |
exportable=True, | |
hooks=None, | |
use_vit_only=False, | |
use_readout="ignore", | |
): | |
if backbone == "vitl16_384": | |
pretrained = _make_pretrained_vitl16_384( | |
use_pretrained, hooks=hooks, use_readout=use_readout | |
) | |
scratch = _make_scratch( | |
[256, 512, 1024, 1024], features, groups=groups, expand=expand | |
) # ViT-L/16 - 85.0% Top1 (backbone) | |
elif backbone == "vitb_rn50_384": | |
pretrained = _make_pretrained_vitb_rn50_384( | |
use_pretrained, | |
hooks=hooks, | |
use_vit_only=use_vit_only, | |
use_readout=use_readout, | |
) | |
scratch = _make_scratch( | |
[256, 512, 768, 768], features, groups=groups, expand=expand | |
) # ViT-H/16 - 85.0% Top1 (backbone) | |
elif backbone == "vitb16_384": | |
pretrained = _make_pretrained_vitb16_384( | |
use_pretrained, hooks=hooks, use_readout=use_readout | |
) | |
scratch = _make_scratch( | |
[96, 192, 384, 768], features, groups=groups, expand=expand | |
) # ViT-B/16 - 84.6% Top1 (backbone) | |
elif backbone == "resnext101_wsl": | |
pretrained = _make_pretrained_resnext101_wsl(use_pretrained) | |
scratch = _make_scratch( | |
[256, 512, 1024, 2048], features, groups=groups, expand=expand | |
) # efficientnet_lite3 | |
elif backbone == "efficientnet_lite3": | |
pretrained = _make_pretrained_efficientnet_lite3( | |
use_pretrained, exportable=exportable | |
) | |
scratch = _make_scratch( | |
[32, 48, 136, 384], features, groups=groups, expand=expand | |
) # efficientnet_lite3 | |
else: | |
print(f"Backbone '{backbone}' not implemented") | |
assert False | |
return pretrained, scratch | |
def _make_scratch(in_shape, out_shape, groups=1, expand=False): | |
scratch = nn.Module() | |
out_shape1 = out_shape | |
out_shape2 = out_shape | |
out_shape3 = out_shape | |
out_shape4 = out_shape | |
if expand == True: | |
out_shape1 = out_shape | |
out_shape2 = out_shape * 2 | |
out_shape3 = out_shape * 4 | |
out_shape4 = out_shape * 8 | |
scratch.layer1_rn = nn.Conv2d( | |
in_shape[0], | |
out_shape1, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
groups=groups, | |
) | |
scratch.layer2_rn = nn.Conv2d( | |
in_shape[1], | |
out_shape2, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
groups=groups, | |
) | |
scratch.layer3_rn = nn.Conv2d( | |
in_shape[2], | |
out_shape3, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
groups=groups, | |
) | |
scratch.layer4_rn = nn.Conv2d( | |
in_shape[3], | |
out_shape4, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
groups=groups, | |
) | |
return scratch | |
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False): | |
efficientnet = torch.hub.load( | |
"rwightman/gen-efficientnet-pytorch", | |
"tf_efficientnet_lite3", | |
pretrained=use_pretrained, | |
exportable=exportable, | |
) | |
return _make_efficientnet_backbone(efficientnet) | |
def _make_efficientnet_backbone(effnet): | |
pretrained = nn.Module() | |
pretrained.layer1 = nn.Sequential( | |
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2] | |
) | |
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3]) | |
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5]) | |
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9]) | |
return pretrained | |
def _make_resnet_backbone(resnet): | |
pretrained = nn.Module() | |
pretrained.layer1 = nn.Sequential( | |
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1 | |
) | |
pretrained.layer2 = resnet.layer2 | |
pretrained.layer3 = resnet.layer3 | |
pretrained.layer4 = resnet.layer4 | |
return pretrained | |
def _make_pretrained_resnext101_wsl(use_pretrained): | |
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl") | |
return _make_resnet_backbone(resnet) | |
class Interpolate(nn.Module): | |
"""Interpolation module.""" | |
def __init__(self, scale_factor, mode, align_corners=False): | |
"""Init. | |
Args: | |
scale_factor (float): scaling | |
mode (str): interpolation mode | |
""" | |
super(Interpolate, self).__init__() | |
self.interp = nn.functional.interpolate | |
self.scale_factor = scale_factor | |
self.mode = mode | |
self.align_corners = align_corners | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: interpolated data | |
""" | |
x = self.interp( | |
x, | |
scale_factor=self.scale_factor, | |
mode=self.mode, | |
align_corners=self.align_corners, | |
) | |
return x | |
class ResidualConvUnit(nn.Module): | |
"""Residual convolution module.""" | |
def __init__(self, features): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super().__init__() | |
self.conv1 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True | |
) | |
self.conv2 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True | |
) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: output | |
""" | |
out = self.relu(x) | |
out = self.conv1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
return out + x | |
class FeatureFusionBlock(nn.Module): | |
"""Feature fusion block.""" | |
def __init__(self, features): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super(FeatureFusionBlock, self).__init__() | |
self.resConfUnit1 = ResidualConvUnit(features) | |
self.resConfUnit2 = ResidualConvUnit(features) | |
def forward(self, *xs): | |
"""Forward pass. | |
Returns: | |
tensor: output | |
""" | |
output = xs[0] | |
if len(xs) == 2: | |
output += self.resConfUnit1(xs[1]) | |
output = self.resConfUnit2(output) | |
output = nn.functional.interpolate( | |
output, scale_factor=2, mode="bilinear", align_corners=True | |
) | |
return output | |
class ResidualConvUnit_custom(nn.Module): | |
"""Residual convolution module.""" | |
def __init__(self, features, activation, bn): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super().__init__() | |
self.bn = bn | |
self.groups = 1 | |
self.conv1 = nn.Conv2d( | |
features, | |
features, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=True, | |
groups=self.groups, | |
) | |
self.conv2 = nn.Conv2d( | |
features, | |
features, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=True, | |
groups=self.groups, | |
) | |
if self.bn == True: | |
self.bn1 = nn.BatchNorm2d(features) | |
self.bn2 = nn.BatchNorm2d(features) | |
self.activation = activation | |
self.skip_add = nn.quantized.FloatFunctional() | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: output | |
""" | |
out = self.activation(x) | |
out = self.conv1(out) | |
if self.bn == True: | |
out = self.bn1(out) | |
out = self.activation(out) | |
out = self.conv2(out) | |
if self.bn == True: | |
out = self.bn2(out) | |
if self.groups > 1: | |
out = self.conv_merge(out) | |
return self.skip_add.add(out, x) | |
# return out + x | |
class FeatureFusionBlock_custom(nn.Module): | |
"""Feature fusion block.""" | |
def __init__( | |
self, | |
features, | |
activation, | |
deconv=False, | |
bn=False, | |
expand=False, | |
align_corners=True, | |
): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super(FeatureFusionBlock_custom, self).__init__() | |
self.deconv = deconv | |
self.align_corners = align_corners | |
self.groups = 1 | |
self.expand = expand | |
out_features = features | |
if self.expand == True: | |
out_features = features // 2 | |
self.out_conv = nn.Conv2d( | |
features, | |
out_features, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=True, | |
groups=1, | |
) | |
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) | |
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) | |
self.skip_add = nn.quantized.FloatFunctional() | |
def forward(self, *xs): | |
"""Forward pass. | |
Returns: | |
tensor: output | |
""" | |
output = xs[0] | |
if len(xs) == 2: | |
res = self.resConfUnit1(xs[1]) | |
output = self.skip_add.add(output, res) | |
# output += res | |
output = self.resConfUnit2(output) | |
output = nn.functional.interpolate( | |
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners | |
) | |
output = self.out_conv(output) | |
return output | |
def _make_fusion_block(features, use_bn): | |
return FeatureFusionBlock_custom( | |
features, | |
nn.ReLU(False), | |
deconv=False, | |
bn=use_bn, | |
expand=False, | |
align_corners=True, | |
) | |
class DPT_(BaseModel): | |
def __init__( | |
self, | |
head, | |
features=256, | |
backbone="vitb_rn50_384", | |
readout="project", | |
channels_last=False, | |
use_bn=False, | |
): | |
super(DPT_, self).__init__() | |
self.channels_last = channels_last | |
hooks = { | |
"vitb_rn50_384": [0, 1, 8, 11], | |
"vitb16_384": [2, 5, 8, 11], | |
"vitl16_384": [5, 11, 17, 23], | |
} | |
# Instantiate backbone and reassemble blocks | |
self.pretrained, self.scratch = _make_encoder( | |
backbone, | |
features, | |
True, # Set to true of you want to train from scratch, uses ImageNet weights | |
groups=1, | |
expand=False, | |
exportable=False, | |
hooks=hooks[backbone], | |
use_readout=readout, | |
) | |
self.scratch.refinenet1 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet2 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet3 = _make_fusion_block(features, use_bn) | |
self.scratch.refinenet4 = _make_fusion_block(features, use_bn) | |
self.scratch.output_conv = head | |
def forward(self, x): | |
if self.channels_last == True: | |
x.contiguous(memory_format=torch.channels_last) | |
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x) | |
layer_1_rn = self.scratch.layer1_rn(layer_1) | |
layer_2_rn = self.scratch.layer2_rn(layer_2) | |
layer_3_rn = self.scratch.layer3_rn(layer_3) | |
layer_4_rn = self.scratch.layer4_rn(layer_4) | |
path_4 = self.scratch.refinenet4(layer_4_rn) | |
path_3 = self.scratch.refinenet3(path_4, layer_3_rn) | |
path_2 = self.scratch.refinenet2(path_3, layer_2_rn) | |
path_1 = self.scratch.refinenet1(path_2, layer_1_rn) | |
out = self.scratch.output_conv(path_1) | |
return out | |
class DPTDepthModel(DPT_): | |
def __init__(self, path=None, non_negative=True, num_channels=1, **kwargs): | |
features = kwargs["features"] if "features" in kwargs else 256 | |
head = nn.Sequential( | |
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), | |
Interpolate(scale_factor=2, mode="bilinear", align_corners=True), | |
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(True), | |
nn.Conv2d(32, num_channels, kernel_size=1, stride=1, padding=0), | |
nn.ReLU(True) if non_negative else nn.Identity(), | |
nn.Identity(), | |
) | |
super().__init__(head, **kwargs) | |
if path is not None: | |
self.load(path) | |
def forward(self, x): | |
return super().forward(x).squeeze(dim=1) | |
def download_if_need(path, url): | |
if Path(path).exists(): | |
return | |
import wget | |
path.parent.mkdir(parents=True, exist_ok=True) | |
wget.download(url, out=str(path)) | |
class DPT: | |
def __init__(self, device, mode="depth"): | |
self.mode = mode | |
self.device = device | |
if self.mode == "depth": | |
path = ".cache/dpt/omnidata_dpt_depth_v2.ckpt" | |
self.model = DPTDepthModel(backbone="vitb_rn50_384") | |
self.aug = transforms.Compose( | |
[ | |
transforms.Resize((384, 384)), | |
transforms.Normalize(mean=0.5, std=0.5), | |
] | |
) | |
elif self.mode == "normal": | |
path = "../ckpts/omnidata_dpt_normal_v2.ckpt" | |
download_if_need( | |
path, | |
"https://huggingface.co/clay3d/omnidata/resolve/main/omnidata_dpt_normal_v2.ckpt", | |
) | |
self.model = DPTDepthModel(backbone="vitb_rn50_384", num_channels=3) | |
self.aug = transforms.Compose( | |
[ | |
transforms.Resize((384, 384)), | |
] | |
) | |
else: | |
raise ValueError(f"Unknown mode {mode} for DPT") | |
checkpoint = torch.load(path, map_location="cpu") | |
if "state_dict" in checkpoint: | |
state_dict = {} | |
for k, v in checkpoint["state_dict"].items(): | |
state_dict[k[6:]] = v | |
else: | |
state_dict = checkpoint | |
self.model.load_state_dict(state_dict) | |
self.model.eval().to(self.device) | |
def __call__(self, x): | |
# x.shape: [B H W 3] | |
x = x.to(self.device) | |
H, W = x.shape[1], x.shape[2] | |
x = x.moveaxis(-1, 1) # [B 3 H W] | |
x = self.aug(x) | |
if self.mode == "depth": | |
depth = self.model(x).clamp(0, 1) | |
depth = F.interpolate( | |
depth.unsqueeze(1), size=(H, W), mode="bicubic", align_corners=False | |
) | |
# depth = depth.cpu().numpy() | |
return depth.moveaxis(1, -1) | |
elif self.mode == "normal": | |
normal = self.model(x).clamp(0, 1) | |
normal = F.interpolate( | |
normal, size=(H, W), mode="bicubic", align_corners=False | |
) | |
# normal = normal.cpu().numpy() | |
return normal.moveaxis(1, -1) | |
else: | |
assert False | |