heheyas
init
cfb7702
raw
history blame
7.11 kB
# Copyright 2022 the Regents of the University of California, Nerfstudio Team and contributors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Helper functions for visualizing outputs """
from dataclasses import dataclass
# from utils.typing import *
from typing import *
import matplotlib
import torch
from jaxtyping import Bool, Float
from torch import Tensor
from utils import colors
Colormaps = Literal[
"default", "turbo", "viridis", "magma", "inferno", "cividis", "gray", "pca"
]
@dataclass(frozen=True)
class ColormapOptions:
"""Options for colormap"""
colormap: Colormaps = "default"
""" The colormap to use """
normalize: bool = False
""" Whether to normalize the input tensor image """
colormap_min: float = 0
""" Minimum value for the output colormap """
colormap_max: float = 1
""" Maximum value for the output colormap """
invert: bool = False
""" Whether to invert the output colormap """
def apply_colormap(
image: Float[Tensor, "*bs channels"],
colormap_options: ColormapOptions = ColormapOptions(),
eps: float = 1e-9,
) -> Float[Tensor, "*bs rgb"]:
"""
Applies a colormap to a tensor image.
If single channel, applies a colormap to the image.
If 3 channel, treats the channels as RGB.
If more than 3 channel, applies a PCA reduction on the dimensions to 3 channels
Args:
image: Input tensor image.
eps: Epsilon value for numerical stability.
Returns:
Tensor with the colormap applied.
"""
# default for rgb images
if image.shape[-1] == 3:
return image
# rendering depth outputs
if image.shape[-1] == 1 and torch.is_floating_point(image):
output = image
if colormap_options.normalize:
output = output - torch.min(output)
output = output / (torch.max(output) + eps)
output = (
output * (colormap_options.colormap_max - colormap_options.colormap_min)
+ colormap_options.colormap_min
)
output = torch.clip(output, 0, 1)
if colormap_options.invert:
output = 1 - output
return apply_float_colormap(output, colormap=colormap_options.colormap)
# rendering boolean outputs
if image.dtype == torch.bool:
return apply_boolean_colormap(image)
if image.shape[-1] > 3:
return apply_pca_colormap(image)
raise NotImplementedError
def apply_float_colormap(
image: Float[Tensor, "*bs 1"], colormap: Colormaps = "viridis"
) -> Float[Tensor, "*bs rgb"]:
"""Convert single channel to a color image.
Args:
image: Single channel image.
colormap: Colormap for image.
Returns:
Tensor: Colored image with colors in [0, 1]
"""
if colormap == "default":
colormap = "turbo"
image = torch.nan_to_num(image, 0)
if colormap == "gray":
return image.repeat(1, 1, 3)
image = image.clamp(0, 1)
image_long = (image * 255).long()
image_long_min = torch.min(image_long)
image_long_max = torch.max(image_long)
assert image_long_min >= 0, f"the min value is {image_long_min}"
assert image_long_max <= 255, f"the max value is {image_long_max}"
return torch.tensor(matplotlib.colormaps[colormap].colors, device=image.device)[
image_long[..., 0]
]
def apply_depth_colormap(
depth: Float[Tensor, "*bs 1"],
accumulation: Optional[Float[Tensor, "*bs 1"]] = None,
near_plane: Optional[float] = None,
far_plane: Optional[float] = None,
colormap_options: ColormapOptions = ColormapOptions(),
) -> Float[Tensor, "*bs rgb"]:
"""Converts a depth image to color for easier analysis.
Args:
depth: Depth image.
accumulation: Ray accumulation used for masking vis.
near_plane: Closest depth to consider. If None, use min image value.
far_plane: Furthest depth to consider. If None, use max image value.
colormap: Colormap to apply.
Returns:
Colored depth image with colors in [0, 1]
"""
near_plane = near_plane or float(torch.min(depth))
far_plane = far_plane or float(torch.max(depth))
depth = (depth - near_plane) / (far_plane - near_plane + 1e-10)
depth = torch.clip(depth, 0, 1)
# depth = torch.nan_to_num(depth, nan=0.0) # TODO(ethan): remove this
colored_image = apply_colormap(depth, colormap_options=colormap_options)
if accumulation is not None:
colored_image = colored_image * accumulation + (1 - accumulation)
return colored_image
def apply_boolean_colormap(
image: Bool[Tensor, "*bs 1"],
true_color: Float[Tensor, "*bs rgb"] = colors.WHITE,
false_color: Float[Tensor, "*bs rgb"] = colors.BLACK,
) -> Float[Tensor, "*bs rgb"]:
"""Converts a depth image to color for easier analysis.
Args:
image: Boolean image.
true_color: Color to use for True.
false_color: Color to use for False.
Returns:
Colored boolean image
"""
colored_image = torch.ones(image.shape[:-1] + (3,))
colored_image[image[..., 0], :] = true_color
colored_image[~image[..., 0], :] = false_color
return colored_image
def apply_pca_colormap(image: Float[Tensor, "*bs dim"]) -> Float[Tensor, "*bs rgb"]:
"""Convert feature image to 3-channel RGB via PCA. The first three principle
components are used for the color channels, with outlier rejection per-channel
Args:
image: image of arbitrary vectors
Returns:
Tensor: Colored image
"""
original_shape = image.shape
image = image.view(-1, image.shape[-1])
_, _, v = torch.pca_lowrank(image)
image = torch.matmul(image, v[..., :3])
d = torch.abs(image - torch.median(image, dim=0).values)
mdev = torch.median(d, dim=0).values
s = d / mdev
m = 3.0 # this is a hyperparam controlling how many std dev outside for outliers
rins = image[s[:, 0] < m, 0]
gins = image[s[:, 1] < m, 1]
bins = image[s[:, 2] < m, 2]
image[:, 0] -= rins.min()
image[:, 1] -= gins.min()
image[:, 2] -= bins.min()
image[:, 0] /= rins.max() - rins.min()
image[:, 1] /= gins.max() - gins.min()
image[:, 2] /= bins.max() - bins.min()
image = torch.clamp(image, 0, 1)
image_long = (image * 255).long()
image_long_min = torch.min(image_long)
image_long_max = torch.max(image_long)
assert image_long_min >= 0, f"the min value is {image_long_min}"
assert image_long_max <= 255, f"the max value is {image_long_max}"
return image.view(*original_shape[:-1], 3)