heheyas
init
cfb7702
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd.profiler as profiler
import numpy as np
from einops import rearrange, repeat, einsum
from .math_utils import get_ray_limits_box, linspace
from ...modules.diffusionmodules.openaimodel import Timestep
class ImageEncoder(nn.Module):
def __init__(self, output_dim: int = 64) -> None:
super().__init__()
self.output_dim = output_dim
def forward(self, image):
return image
class PositionalEncoding(torch.nn.Module):
"""
Implement NeRF's positional encoding
"""
def __init__(self, num_freqs=6, d_in=3, freq_factor=np.pi, include_input=True):
super().__init__()
self.num_freqs = num_freqs
self.d_in = d_in
self.freqs = freq_factor * 2.0 ** torch.arange(0, num_freqs)
self.d_out = self.num_freqs * 2 * d_in
self.include_input = include_input
if include_input:
self.d_out += d_in
# f1 f1 f2 f2 ... to multiply x by
self.register_buffer(
"_freqs", torch.repeat_interleave(self.freqs, 2).view(1, -1, 1)
)
# 0 pi/2 0 pi/2 ... so that
# (sin(x + _phases[0]), sin(x + _phases[1]) ...) = (sin(x), cos(x)...)
_phases = torch.zeros(2 * self.num_freqs)
_phases[1::2] = np.pi * 0.5
self.register_buffer("_phases", _phases.view(1, -1, 1))
def forward(self, x):
"""
Apply positional encoding (new implementation)
:param x (batch, self.d_in)
:return (batch, self.d_out)
"""
with profiler.record_function("positional_enc"):
# embed = x.unsqueeze(1).repeat(1, self.num_freqs * 2, 1)
embed = repeat(x, "... C -> ... N C", N=self.num_freqs * 2)
embed = torch.sin(torch.addcmul(self._phases, embed, self._freqs))
embed = rearrange(embed, "... N C -> ... (N C)")
if self.include_input:
embed = torch.cat((x, embed), dim=-1)
return embed
class RayGenerator(torch.nn.Module):
"""
from camera pose and intrinsics to ray origins and directions
"""
def __init__(self):
super().__init__()
(
self.ray_origins_h,
self.ray_directions,
self.depths,
self.image_coords,
self.rendering_options,
) = (None, None, None, None, None)
def forward(self, cam2world_matrix, intrinsics, render_size):
"""
Create batches of rays and return origins and directions.
cam2world_matrix: (N, 4, 4)
intrinsics: (N, 3, 3)
render_size: int
ray_origins: (N, M, 3)
ray_dirs: (N, M, 2)
"""
N, M = cam2world_matrix.shape[0], render_size**2
cam_locs_world = cam2world_matrix[:, :3, 3]
fx = intrinsics[:, 0, 0]
fy = intrinsics[:, 1, 1]
cx = intrinsics[:, 0, 2]
cy = intrinsics[:, 1, 2]
sk = intrinsics[:, 0, 1]
uv = torch.stack(
torch.meshgrid(
torch.arange(
render_size, dtype=torch.float32, device=cam2world_matrix.device
),
torch.arange(
render_size, dtype=torch.float32, device=cam2world_matrix.device
),
indexing="ij",
)
)
uv = uv.flip(0).reshape(2, -1).transpose(1, 0)
uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1)
x_cam = uv[:, :, 0].view(N, -1) * (1.0 / render_size) + (0.5 / render_size)
y_cam = uv[:, :, 1].view(N, -1) * (1.0 / render_size) + (0.5 / render_size)
z_cam = torch.ones((N, M), device=cam2world_matrix.device)
x_lift = (
(
x_cam
- cx.unsqueeze(-1)
+ cy.unsqueeze(-1) * sk.unsqueeze(-1) / fy.unsqueeze(-1)
- sk.unsqueeze(-1) * y_cam / fy.unsqueeze(-1)
)
/ fx.unsqueeze(-1)
* z_cam
)
y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam
cam_rel_points = torch.stack(
(x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1
)
# NOTE: this should be named _blender2opencv
_opencv2blender = (
torch.tensor(
[
[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1],
],
dtype=torch.float32,
device=cam2world_matrix.device,
)
.unsqueeze(0)
.repeat(N, 1, 1)
)
cam2world_matrix = torch.bmm(cam2world_matrix, _opencv2blender)
world_rel_points = torch.bmm(
cam2world_matrix, cam_rel_points.permute(0, 2, 1)
).permute(0, 2, 1)[:, :, :3]
ray_dirs = world_rel_points - cam_locs_world[:, None, :]
ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2)
ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1)
return ray_origins, ray_dirs
class RaySampler(torch.nn.Module):
def __init__(
self,
num_samples_per_ray,
bbox_length=1.0,
near=0.5,
far=10000.0,
disparity=False,
):
super().__init__()
self.num_samples_per_ray = num_samples_per_ray
self.bbox_length = bbox_length
self.near = near
self.far = far
self.disparity = disparity
def forward(self, ray_origins, ray_directions):
if not self.disparity:
t_start, t_end = get_ray_limits_box(
ray_origins, ray_directions, 2 * self.bbox_length
)
else:
t_start = torch.full_like(ray_origins, self.near)
t_end = torch.full_like(ray_origins, self.far)
is_ray_valid = t_end > t_start
if torch.any(is_ray_valid).item():
t_start[~is_ray_valid] = t_start[is_ray_valid].min()
t_end[~is_ray_valid] = t_start[is_ray_valid].max()
if not self.disparity:
depths = linspace(t_start, t_end, self.num_samples_per_ray)
depths += (
torch.rand_like(depths)
* (t_end - t_start)
/ (self.num_samples_per_ray - 1)
)
else:
step = 1.0 / self.num_samples_per_ray
z_steps = torch.linspace(
0, 1 - step, self.num_samples_per_ray, device=ray_origins.device
)
z_steps += torch.rand_like(z_steps) * step
depths = 1 / (1 / self.near * (1 - z_steps) + 1 / self.far * z_steps)
depths = depths[..., None, None, None]
return ray_origins[None] + ray_directions[None] * depths
class PixelNeRF(torch.nn.Module):
def __init__(
self,
num_samples_per_ray: int = 128,
feature_dim: int = 64,
interp: str = "bilinear",
padding: str = "border",
disparity: bool = False,
near: float = 0.5,
far: float = 10000.0,
use_feats_std: bool = False,
use_pos_emb: bool = False,
) -> None:
super().__init__()
# self.positional_encoder = Timestep(3) # TODO
self.num_samples_per_ray = num_samples_per_ray
self.ray_generator = RayGenerator()
self.ray_sampler = RaySampler(
num_samples_per_ray, near=near, far=far, disparity=disparity
) # TODO
self.interp = interp
self.padding = padding
self.positional_encoder = PositionalEncoding()
# self.feature_aggregator = nn.Linear(128, 129) # TODO
self.use_feats_std = use_feats_std
self.use_pos_emb = use_pos_emb
d_in = feature_dim
if use_feats_std:
d_in += feature_dim
if use_pos_emb:
d_in += self.positional_encoder.d_out
self.feature_aggregator = nn.Sequential(
nn.Linear(d_in, 128),
nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, 129),
)
# self.decoder = nn.Linear(128, 131) # TODO
self.decoder = nn.Sequential(
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, 128),
nn.ReLU(),
nn.Linear(128, 131),
)
def project(self, ray_samples, source_c2ws, source_instrincs):
# TODO: implement
# S for number of source cameras
# ray_samples: [B, N, H * W, N_sample, 3]
# source_c2ws: [B, S, 4, 4]
# source_intrinsics: [B, S, 3, 3]
# return [B, S, N, H * W, N_sample, 2]
S = source_c2ws.shape[1]
B = ray_samples.shape[0]
N = ray_samples.shape[1]
HW = ray_samples.shape[2]
ray_samples = repeat(
ray_samples,
"B N HW N_sample C -> B S N HW N_sample C",
S=source_c2ws.shape[1],
)
padding = torch.ones((B, S, N, HW, self.num_samples_per_ray, 1)).to(ray_samples)
ray_samples_homo = torch.cat([ray_samples, padding], dim=-1)
source_c2ws = repeat(source_c2ws, "B S C1 C2 -> B S N 1 1 C1 C2", N=N)
source_instrincs = repeat(source_instrincs, "B S C1 C2 -> B S N 1 1 C1 C2", N=N)
source_w2c = source_c2ws.inverse()
projected_samples = einsum(
source_w2c, ray_samples_homo, "... i j, ... j -> ... i"
)[..., :3]
# NOTE: assumes opengl convention
projected_samples = -1 * projected_samples[..., :2] / projected_samples[..., 2:]
# NOTE: intrinsics here are normalized by resolution
fx = source_instrincs[..., 0, 0]
fy = source_instrincs[..., 1, 1]
cx = source_instrincs[..., 0, 2]
cy = source_instrincs[..., 1, 2]
x = projected_samples[..., 0] * fx + cx
# negative sign here is caused by opengl, F.grid_sample is consistent with openCV convention
y = -projected_samples[..., 1] * fy + cy
return torch.stack([x, y], dim=-1)
def forward(
self, image_feats, source_c2ws, source_intrinsics, c2ws, intrinsics, render_size
):
# image_feats: [B S C H W]
B = c2ws.shape[0]
T = c2ws.shape[1]
ray_origins, ray_directions = self.ray_generator(
c2ws.reshape(-1, 4, 4), intrinsics.reshape(-1, 3, 3), render_size
) # [B * N, H * W, 3]
# breakpoint()
ray_samples = self.ray_sampler(
ray_origins, ray_directions
) # [N_sample, B * N, H * W, 3]
ray_samples = rearrange(ray_samples, "Ns (B N) HW C -> B N HW Ns C", B=B)
projected_samples = self.project(ray_samples, source_c2ws, source_intrinsics)
# # debug
# p = projected_samples[:, :, 0, :, 0, :]
# p = p.reshape(p.shape[0] * p.shape[1], *p.shape[2:])
# breakpoint()
# image_feats = repeat(image_feats, "B S C H W -> (B S N) C H W", N=T)
image_feats = rearrange(image_feats, "B S C H W -> (B S) C H W")
projected_samples = rearrange(
projected_samples, "B S N HW Ns xy -> (B S) (N Ns) HW xy"
)
# make sure the projected samples are in the range of [-1, 1], as required by F.grid_sample
joint = F.grid_sample(
image_feats,
projected_samples * 2.0 - 1.0,
padding_mode=self.padding,
mode=self.interp,
align_corners=True,
)
# print("image_feats", image_feats.max(), image_feats.min())
# print("samples", projected_samples.max(), projected_samples.min())
joint = rearrange(
joint,
"(B S) C (N Ns) HW -> B S N HW Ns C",
B=B,
Ns=self.num_samples_per_ray,
)
reduced = torch.mean(joint, dim=1) # reduce on source dimension
if self.use_feats_std:
if not joint.shape[1] == 1:
reduced = torch.cat((reduced, joint.std(dim=1)), dim=-1)
else:
reduced = torch.cat((reduced, torch.zeros_like(reduced)), dim=-1)
if self.use_pos_emb:
reduced = torch.cat((reduced, self.positional_encoder(ray_samples)), dim=-1)
reduced = self.feature_aggregator(reduced)
feats, weights = reduced.split([reduced.shape[-1] - 1, 1], dim=-1)
# feats: [B, N, H * W, N_samples, N_c]
# weights: [B, N, H * W, N_samples, 1]
weights = F.softmax(weights, dim=-2)
feats = torch.sum(feats * weights, dim=-2)
rgb, feats = self.decoder(feats).split([3, 128], dim=-1)
rgb = F.sigmoid(rgb)
rgb = rearrange(rgb, "B N (H W) C -> B N C H W", H=render_size)
feats = rearrange(feats, "B N (H W) C -> B N C H W", H=render_size)
# print(rgb.max(), rgb.min())
# print(feats.max(), feats.min())
return rgb, feats