""" DPT Model for monocular depth estimation, adopted from https://github1s.com/ashawkey/stable-dreamfusion/blob/HEAD/preprocess_image.py""" import math import types from typing import Any import torch import torch.nn as nn import torch.nn.functional as F from torchvision import transforms from pathlib import Path import timm class BaseModel(torch.nn.Module): def load(self, path): """Load model from file. Args: path (str): file path """ parameters = torch.load(path, map_location=torch.device("cpu")) if "optimizer" in parameters: parameters = parameters["model"] self.load_state_dict(parameters) def unflatten_with_named_tensor(input, dim, sizes): """Workaround for unflattening with named tensor.""" # tracer acts up with unflatten. See https://github.com/pytorch/pytorch/issues/49538 new_shape = list(input.shape)[:dim] + list(sizes) + list(input.shape)[dim + 1 :] return input.view(*new_shape) class Slice(nn.Module): def __init__(self, start_index=1): super(Slice, self).__init__() self.start_index = start_index def forward(self, x): return x[:, self.start_index :] class AddReadout(nn.Module): def __init__(self, start_index=1): super(AddReadout, self).__init__() self.start_index = start_index def forward(self, x): if self.start_index == 2: readout = (x[:, 0] + x[:, 1]) / 2 else: readout = x[:, 0] return x[:, self.start_index :] + readout.unsqueeze(1) class ProjectReadout(nn.Module): def __init__(self, in_features, start_index=1): super(ProjectReadout, self).__init__() self.start_index = start_index self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU()) def forward(self, x): readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :]) features = torch.cat((x[:, self.start_index :], readout), -1) return self.project(features) class Transpose(nn.Module): def __init__(self, dim0, dim1): super(Transpose, self).__init__() self.dim0 = dim0 self.dim1 = dim1 def forward(self, x): x = x.transpose(self.dim0, self.dim1) return x def forward_vit(pretrained, x): b, c, h, w = x.shape glob = pretrained.model.forward_flex(x) layer_1 = pretrained.activations["1"] layer_2 = pretrained.activations["2"] layer_3 = pretrained.activations["3"] layer_4 = pretrained.activations["4"] layer_1 = pretrained.act_postprocess1[0:2](layer_1) layer_2 = pretrained.act_postprocess2[0:2](layer_2) layer_3 = pretrained.act_postprocess3[0:2](layer_3) layer_4 = pretrained.act_postprocess4[0:2](layer_4) unflattened_dim = 2 unflattened_size = ( int(torch.div(h, pretrained.model.patch_size[1], rounding_mode="floor")), int(torch.div(w, pretrained.model.patch_size[0], rounding_mode="floor")), ) unflatten = nn.Sequential(nn.Unflatten(unflattened_dim, unflattened_size)) if layer_1.ndim == 3: layer_1 = unflatten(layer_1) if layer_2.ndim == 3: layer_2 = unflatten(layer_2) if layer_3.ndim == 3: layer_3 = unflatten_with_named_tensor( layer_3, unflattened_dim, unflattened_size ) if layer_4.ndim == 3: layer_4 = unflatten_with_named_tensor( layer_4, unflattened_dim, unflattened_size ) layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1) layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2) layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3) layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4) return layer_1, layer_2, layer_3, layer_4 def _resize_pos_embed(self, posemb, gs_h, gs_w): posemb_tok, posemb_grid = ( posemb[:, : self.start_index], posemb[0, self.start_index :], ) gs_old = int(math.sqrt(posemb_grid.shape[0])) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear") posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def forward_flex(self, x): b, c, h, w = x.shape pos_embed = self._resize_pos_embed( self.pos_embed, torch.div(h, self.patch_size[1], rounding_mode="floor"), torch.div(w, self.patch_size[0], rounding_mode="floor"), ) B = x.shape[0] if hasattr(self.patch_embed, "backbone"): x = self.patch_embed.backbone(x) if isinstance(x, (list, tuple)): x = x[-1] # last feature if backbone outputs list/tuple of features x = self.patch_embed.proj(x).flatten(2).transpose(1, 2) if getattr(self, "dist_token", None) is not None: cls_tokens = self.cls_token.expand( B, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks dist_token = self.dist_token.expand(B, -1, -1) x = torch.cat((cls_tokens, dist_token, x), dim=1) else: cls_tokens = self.cls_token.expand( B, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) x = x + pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) x = self.norm(x) return x activations = {} def get_activation(name): def hook(model, input, output): activations[name] = output return hook def get_readout_oper(vit_features, features, use_readout, start_index=1): if use_readout == "ignore": readout_oper = [Slice(start_index)] * len(features) elif use_readout == "add": readout_oper = [AddReadout(start_index)] * len(features) elif use_readout == "project": readout_oper = [ ProjectReadout(vit_features, start_index) for out_feat in features ] else: assert ( False ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'" return readout_oper def _make_vit_b16_backbone( model, features=[96, 192, 384, 768], size=[384, 384], hooks=[2, 5, 8, 11], vit_features=768, use_readout="ignore", start_index=1, ): pretrained = nn.Module() pretrained.model = model pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) pretrained.activations = activations readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) # 32, 48, 136, 384 pretrained.act_postprocess1 = nn.Sequential( readout_oper[0], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[0], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[0], out_channels=features[0], kernel_size=4, stride=4, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess2 = nn.Sequential( readout_oper[1], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[1], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[1], out_channels=features[1], kernel_size=2, stride=2, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess3 = nn.Sequential( readout_oper[2], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[2], kernel_size=1, stride=1, padding=0, ), ) pretrained.act_postprocess4 = nn.Sequential( readout_oper[3], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[3], kernel_size=1, stride=1, padding=0, ), nn.Conv2d( in_channels=features[3], out_channels=features[3], kernel_size=3, stride=2, padding=1, ), ) pretrained.model.start_index = start_index pretrained.model.patch_size = [16, 16] # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) pretrained.model._resize_pos_embed = types.MethodType( _resize_pos_embed, pretrained.model ) return pretrained def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model("vit_large_patch16_384", pretrained=pretrained) hooks = [5, 11, 17, 23] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[256, 512, 1024, 1024], hooks=hooks, vit_features=1024, use_readout=use_readout, ) def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model("vit_base_patch16_384", pretrained=pretrained) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout ) def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout ) def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None): model = timm.create_model( "vit_deit_base_distilled_patch16_384", pretrained=pretrained ) hooks = [2, 5, 8, 11] if hooks == None else hooks return _make_vit_b16_backbone( model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout, start_index=2, ) def _make_vit_b_rn50_backbone( model, features=[256, 512, 768, 768], size=[384, 384], hooks=[0, 1, 8, 11], vit_features=768, use_vit_only=False, use_readout="ignore", start_index=1, ): pretrained = nn.Module() pretrained.model = model if use_vit_only == True: pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) else: pretrained.model.patch_embed.backbone.stages[0].register_forward_hook( get_activation("1") ) pretrained.model.patch_embed.backbone.stages[1].register_forward_hook( get_activation("2") ) pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) pretrained.activations = activations readout_oper = get_readout_oper(vit_features, features, use_readout, start_index) if use_vit_only == True: pretrained.act_postprocess1 = nn.Sequential( readout_oper[0], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[0], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[0], out_channels=features[0], kernel_size=4, stride=4, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess2 = nn.Sequential( readout_oper[1], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[1], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[1], out_channels=features[1], kernel_size=2, stride=2, padding=0, bias=True, dilation=1, groups=1, ), ) else: pretrained.act_postprocess1 = nn.Sequential( nn.Identity(), nn.Identity(), nn.Identity() ) pretrained.act_postprocess2 = nn.Sequential( nn.Identity(), nn.Identity(), nn.Identity() ) pretrained.act_postprocess3 = nn.Sequential( readout_oper[2], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[2], kernel_size=1, stride=1, padding=0, ), ) pretrained.act_postprocess4 = nn.Sequential( readout_oper[3], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[3], kernel_size=1, stride=1, padding=0, ), nn.Conv2d( in_channels=features[3], out_channels=features[3], kernel_size=3, stride=2, padding=1, ), ) pretrained.model.start_index = start_index pretrained.model.patch_size = [16, 16] # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model) # We inject this function into the VisionTransformer instances so that # we can use it with interpolated position embeddings without modifying the library source. pretrained.model._resize_pos_embed = types.MethodType( _resize_pos_embed, pretrained.model ) return pretrained def _make_pretrained_vitb_rn50_384( pretrained, use_readout="ignore", hooks=None, use_vit_only=False ): model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained) hooks = [0, 1, 8, 11] if hooks == None else hooks return _make_vit_b_rn50_backbone( model, features=[256, 512, 768, 768], size=[384, 384], hooks=hooks, use_vit_only=use_vit_only, use_readout=use_readout, ) def _make_encoder( backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore", ): if backbone == "vitl16_384": pretrained = _make_pretrained_vitl16_384( use_pretrained, hooks=hooks, use_readout=use_readout ) scratch = _make_scratch( [256, 512, 1024, 1024], features, groups=groups, expand=expand ) # ViT-L/16 - 85.0% Top1 (backbone) elif backbone == "vitb_rn50_384": pretrained = _make_pretrained_vitb_rn50_384( use_pretrained, hooks=hooks, use_vit_only=use_vit_only, use_readout=use_readout, ) scratch = _make_scratch( [256, 512, 768, 768], features, groups=groups, expand=expand ) # ViT-H/16 - 85.0% Top1 (backbone) elif backbone == "vitb16_384": pretrained = _make_pretrained_vitb16_384( use_pretrained, hooks=hooks, use_readout=use_readout ) scratch = _make_scratch( [96, 192, 384, 768], features, groups=groups, expand=expand ) # ViT-B/16 - 84.6% Top1 (backbone) elif backbone == "resnext101_wsl": pretrained = _make_pretrained_resnext101_wsl(use_pretrained) scratch = _make_scratch( [256, 512, 1024, 2048], features, groups=groups, expand=expand ) # efficientnet_lite3 elif backbone == "efficientnet_lite3": pretrained = _make_pretrained_efficientnet_lite3( use_pretrained, exportable=exportable ) scratch = _make_scratch( [32, 48, 136, 384], features, groups=groups, expand=expand ) # efficientnet_lite3 else: print(f"Backbone '{backbone}' not implemented") assert False return pretrained, scratch def _make_scratch(in_shape, out_shape, groups=1, expand=False): scratch = nn.Module() out_shape1 = out_shape out_shape2 = out_shape out_shape3 = out_shape out_shape4 = out_shape if expand == True: out_shape1 = out_shape out_shape2 = out_shape * 2 out_shape3 = out_shape * 4 out_shape4 = out_shape * 8 scratch.layer1_rn = nn.Conv2d( in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) scratch.layer2_rn = nn.Conv2d( in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) scratch.layer3_rn = nn.Conv2d( in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) scratch.layer4_rn = nn.Conv2d( in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups, ) return scratch def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False): efficientnet = torch.hub.load( "rwightman/gen-efficientnet-pytorch", "tf_efficientnet_lite3", pretrained=use_pretrained, exportable=exportable, ) return _make_efficientnet_backbone(efficientnet) def _make_efficientnet_backbone(effnet): pretrained = nn.Module() pretrained.layer1 = nn.Sequential( effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2] ) pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3]) pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5]) pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9]) return pretrained def _make_resnet_backbone(resnet): pretrained = nn.Module() pretrained.layer1 = nn.Sequential( resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1 ) pretrained.layer2 = resnet.layer2 pretrained.layer3 = resnet.layer3 pretrained.layer4 = resnet.layer4 return pretrained def _make_pretrained_resnext101_wsl(use_pretrained): resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl") return _make_resnet_backbone(resnet) class Interpolate(nn.Module): """Interpolation module.""" def __init__(self, scale_factor, mode, align_corners=False): """Init. Args: scale_factor (float): scaling mode (str): interpolation mode """ super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.scale_factor = scale_factor self.mode = mode self.align_corners = align_corners def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: interpolated data """ x = self.interp( x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners, ) return x class ResidualConvUnit(nn.Module): """Residual convolution module.""" def __init__(self, features): """Init. Args: features (int): number of features """ super().__init__() self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.relu = nn.ReLU(inplace=True) def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.relu(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) return out + x class FeatureFusionBlock(nn.Module): """Feature fusion block.""" def __init__(self, features): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.resConfUnit1 = ResidualConvUnit(features) self.resConfUnit2 = ResidualConvUnit(features) def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: output += self.resConfUnit1(xs[1]) output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=True ) return output class ResidualConvUnit_custom(nn.Module): """Residual convolution module.""" def __init__(self, features, activation, bn): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups = 1 self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups, ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups, ) if self.bn == True: self.bn1 = nn.BatchNorm2d(features) self.bn2 = nn.BatchNorm2d(features) self.activation = activation self.skip_add = nn.quantized.FloatFunctional() def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.bn == True: out = self.bn1(out) out = self.activation(out) out = self.conv2(out) if self.bn == True: out = self.bn2(out) if self.groups > 1: out = self.conv_merge(out) return self.skip_add.add(out, x) # return out + x class FeatureFusionBlock_custom(nn.Module): """Feature fusion block.""" def __init__( self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, ): """Init. Args: features (int): number of features """ super(FeatureFusionBlock_custom, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups = 1 self.expand = expand out_features = features if self.expand == True: out_features = features // 2 self.out_conv = nn.Conv2d( features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1, ) self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) self.skip_add = nn.quantized.FloatFunctional() def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: res = self.resConfUnit1(xs[1]) output = self.skip_add.add(output, res) # output += res output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=self.align_corners ) output = self.out_conv(output) return output def _make_fusion_block(features, use_bn): return FeatureFusionBlock_custom( features, nn.ReLU(False), deconv=False, bn=use_bn, expand=False, align_corners=True, ) class DPT_(BaseModel): def __init__( self, head, features=256, backbone="vitb_rn50_384", readout="project", channels_last=False, use_bn=False, ): super(DPT_, self).__init__() self.channels_last = channels_last hooks = { "vitb_rn50_384": [0, 1, 8, 11], "vitb16_384": [2, 5, 8, 11], "vitl16_384": [5, 11, 17, 23], } # Instantiate backbone and reassemble blocks self.pretrained, self.scratch = _make_encoder( backbone, features, True, # Set to true of you want to train from scratch, uses ImageNet weights groups=1, expand=False, exportable=False, hooks=hooks[backbone], use_readout=readout, ) self.scratch.refinenet1 = _make_fusion_block(features, use_bn) self.scratch.refinenet2 = _make_fusion_block(features, use_bn) self.scratch.refinenet3 = _make_fusion_block(features, use_bn) self.scratch.refinenet4 = _make_fusion_block(features, use_bn) self.scratch.output_conv = head def forward(self, x): if self.channels_last == True: x.contiguous(memory_format=torch.channels_last) layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x) layer_1_rn = self.scratch.layer1_rn(layer_1) layer_2_rn = self.scratch.layer2_rn(layer_2) layer_3_rn = self.scratch.layer3_rn(layer_3) layer_4_rn = self.scratch.layer4_rn(layer_4) path_4 = self.scratch.refinenet4(layer_4_rn) path_3 = self.scratch.refinenet3(path_4, layer_3_rn) path_2 = self.scratch.refinenet2(path_3, layer_2_rn) path_1 = self.scratch.refinenet1(path_2, layer_1_rn) out = self.scratch.output_conv(path_1) return out class DPTDepthModel(DPT_): def __init__(self, path=None, non_negative=True, num_channels=1, **kwargs): features = kwargs["features"] if "features" in kwargs else 256 head = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(True), nn.Conv2d(32, num_channels, kernel_size=1, stride=1, padding=0), nn.ReLU(True) if non_negative else nn.Identity(), nn.Identity(), ) super().__init__(head, **kwargs) if path is not None: self.load(path) def forward(self, x): return super().forward(x).squeeze(dim=1) def download_if_need(path, url): if Path(path).exists(): return import wget path.parent.mkdir(parents=True, exist_ok=True) wget.download(url, out=str(path)) class DPT: def __init__(self, device, mode="depth"): self.mode = mode self.device = device if self.mode == "depth": path = ".cache/dpt/omnidata_dpt_depth_v2.ckpt" self.model = DPTDepthModel(backbone="vitb_rn50_384") self.aug = transforms.Compose( [ transforms.Resize((384, 384)), transforms.Normalize(mean=0.5, std=0.5), ] ) elif self.mode == "normal": path = "../ckpts/omnidata_dpt_normal_v2.ckpt" download_if_need( path, "https://huggingface.co/clay3d/omnidata/resolve/main/omnidata_dpt_normal_v2.ckpt", ) self.model = DPTDepthModel(backbone="vitb_rn50_384", num_channels=3) self.aug = transforms.Compose( [ transforms.Resize((384, 384)), ] ) else: raise ValueError(f"Unknown mode {mode} for DPT") checkpoint = torch.load(path, map_location="cpu") if "state_dict" in checkpoint: state_dict = {} for k, v in checkpoint["state_dict"].items(): state_dict[k[6:]] = v else: state_dict = checkpoint self.model.load_state_dict(state_dict) self.model.eval().to(self.device) @torch.no_grad() def __call__(self, x): # x.shape: [B H W 3] x = x.to(self.device) H, W = x.shape[1], x.shape[2] x = x.moveaxis(-1, 1) # [B 3 H W] x = self.aug(x) if self.mode == "depth": depth = self.model(x).clamp(0, 1) depth = F.interpolate( depth.unsqueeze(1), size=(H, W), mode="bicubic", align_corners=False ) # depth = depth.cpu().numpy() return depth.moveaxis(1, -1) elif self.mode == "normal": normal = self.model(x).clamp(0, 1) normal = F.interpolate( normal, size=(H, W), mode="bicubic", align_corners=False ) # normal = normal.cpu().numpy() return normal.moveaxis(1, -1) else: assert False