Spaces:
Sleeping
Sleeping
File size: 6,367 Bytes
9299b96 a03bbab 9299b96 a03bbab 60aa34b 9299b96 60aa34b 9299b96 a03bbab 9299b96 a03bbab 9299b96 60aa34b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
from huggingface_hub import InferenceClient
import re
from streaming_stt_nemo import Model
import torch
import random
import pandas as pd
from datetime import datetime
import base64
import io
import json
default_lang = "en"
engines = { default_lang: Model(default_lang) }
def transcribe(audio):
lang = "en"
model = engines[lang]
text = model.stt_file(audio)[0]
return text
HF_TOKEN = os.environ.get("HF_TOKEN", None)
def client_fn(model):
if "Mixtral" in model:
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
elif "Llama" in model:
return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
elif "Mistral" in model:
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
elif "Phi" in model:
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
else:
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
def randomize_seed_fn(seed: int) -> int:
seed = random.randint(0, 999999)
return seed
system_instructions1 = """
[SYSTEM] Answer as Dr. Nova Quantum, a brilliant 50-something scientist specializing in quantum computing and artificial intelligence. Your responses should reflect your vast knowledge and experience in cutting-edge technology and scientific advancements. Maintain a professional yet approachable demeanor, offering insights that blend theoretical concepts with practical applications. Your goal is to educate and inspire, making complex topics accessible without oversimplifying. Draw from your decades of research and innovation to provide nuanced, forward-thinking answers. Remember, you're not just sharing information, but guiding others towards a deeper understanding of our technological future.
Keep conversations engaging, clear, and concise.
Avoid unnecessary introductions and answer the user's questions directly.
Respond in a manner that reflects your expertise and wisdom.
[USER]
"""
# Initialize an empty DataFrame to store the history
history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response'])
def save_history():
history_df_copy = history_df.copy()
history_df_copy['Timestamp'] = history_df_copy['Timestamp'].astype(str)
history_df_copy.to_json('chat_history.json', orient='records')
def load_history():
global history_df
if os.path.exists('chat_history.json'):
history_df = pd.read_json('chat_history.json', orient='records')
history_df['Timestamp'] = pd.to_datetime(history_df['Timestamp'])
else:
history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response'])
return history_df
def models(text, model="Mixtral 8x7B", seed=42):
global history_df
seed = int(randomize_seed_fn(seed))
generator = torch.Generator().manual_seed(seed)
client = client_fn(model)
generate_kwargs = dict(
max_new_tokens=300,
seed=seed
)
formatted_prompt = system_instructions1 + text + "[DR. NOVA QUANTUM]"
stream = client.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
# Add the current interaction to the history DataFrame
new_row = pd.DataFrame({
'Timestamp': [datetime.now()],
'Request': [text],
'Response': [output]
})
history_df = pd.concat([history_df, new_row], ignore_index=True)
save_history()
return output
async def respond(audio, model, seed):
user = transcribe(audio)
reply = models(user, model, seed)
communicate = edge_tts.Communicate(reply)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
def display_history():
df = load_history()
df['Timestamp'] = df['Timestamp'].astype(str)
return df
def download_history():
csv_buffer = io.StringIO()
history_df_copy = history_df.copy()
history_df_copy['Timestamp'] = history_df_copy['Timestamp'].astype(str)
history_df_copy.to_csv(csv_buffer, index=False)
csv_string = csv_buffer.getvalue()
b64 = base64.b64encode(csv_string.encode()).decode()
href = f'data:text/csv;base64,{b64}'
return gr.HTML(f'<a href="{href}" download="chat_history.csv">Download Chat History</a>')
DESCRIPTION = """ # <center><b>Dr. Nova Quantum⚡</b></center>
### <center>Your Personal Guide to the Frontiers of Science and Technology</center>
### <center>Engage in Voice Chat with a Visionary Scientist</center>
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
select = gr.Dropdown([
'Mixtral 8x7B',
'Llama 3 8B',
'Mistral 7B v0.3',
'Phi 3 mini',
],
value="Mistral 7B v0.3",
label="Model"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=999999,
step=1,
value=0,
visible=False
)
input_audio = gr.Audio(label="User", sources="microphone", type="filepath")
output_audio = gr.Audio(label="Dr. Nova Quantum", type="filepath", autoplay=True)
# Add a DataFrame to display the history
history_display = gr.DataFrame(label="Conversation History")
# Add a download button for the history
download_button = gr.Button("Download Conversation History")
download_link = gr.HTML()
def process_audio(audio, model, seed):
response = asyncio.run(respond(audio, model, seed))
return response, display_history()
input_audio.change(
fn=process_audio,
inputs=[input_audio, select, seed],
outputs=[output_audio, history_display]
)
# Connect the download button to the download function
download_button.click(fn=download_history, outputs=[download_link])
# Load history when the page is loaded or refreshed
demo.load(fn=display_history, outputs=[history_display])
if __name__ == "__main__":
# Load history at startup
load_history()
demo.queue(max_size=200).launch() |