Spaces:
Sleeping
Sleeping
import gradio as gr | |
import edge_tts | |
import asyncio | |
import tempfile | |
import os | |
from huggingface_hub import InferenceClient | |
import re | |
from streaming_stt_nemo import Model | |
import torch | |
import random | |
import pandas as pd | |
from datetime import datetime | |
import base64 | |
import io | |
default_lang = "en" | |
engines = { default_lang: Model(default_lang) } | |
def transcribe(audio): | |
lang = "en" | |
model = engines[lang] | |
text = model.stt_file(audio)[0] | |
return text | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
def client_fn(model): | |
if "Mixtral" in model: | |
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
elif "Llama" in model: | |
return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") | |
elif "Mistral" in model: | |
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") | |
elif "Phi" in model: | |
return InferenceClient("microsoft/Phi-3-mini-4k-instruct") | |
else: | |
return InferenceClient("microsoft/Phi-3-mini-4k-instruct") | |
def randomize_seed_fn(seed: int) -> int: | |
seed = random.randint(0, 999999) | |
return seed | |
system_instructions1 = """ | |
[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark.' | |
Keep conversation friendly, short, clear, and concise. | |
Avoid unnecessary introductions and answer the user's questions directly. | |
Respond in a normal, conversational manner while being friendly and helpful. | |
[USER] | |
""" | |
# Initialize an empty DataFrame to store the history | |
history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response']) | |
def models(text, model="Mixtral 8x7B", seed=42): | |
global history_df | |
seed = int(randomize_seed_fn(seed)) | |
generator = torch.Generator().manual_seed(seed) | |
client = client_fn(model) | |
generate_kwargs = dict( | |
max_new_tokens=300, | |
seed=seed | |
) | |
formatted_prompt = system_instructions1 + text + "[JARVIS]" | |
stream = client.text_generation( | |
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
if not response.token.text == "</s>": | |
output += response.token.text | |
# Add the current interaction to the history DataFrame | |
new_row = pd.DataFrame({ | |
'Timestamp': [datetime.now().strftime("%Y-%m-%d %H:%M:%S")], # Convert to string | |
'Request': [text], | |
'Response': [output] | |
}) | |
history_df = pd.concat([history_df, new_row], ignore_index=True) | |
return output | |
async def respond(audio, model, seed): | |
user = transcribe(audio) | |
reply = models(user, model, seed) | |
communicate = edge_tts.Communicate(reply) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: | |
tmp_path = tmp_file.name | |
await communicate.save(tmp_path) | |
return tmp_path | |
def display_history(): | |
return history_df | |
def download_history(): | |
csv_buffer = io.StringIO() | |
history_df.to_csv(csv_buffer, index=False) | |
csv_string = csv_buffer.getvalue() | |
b64 = base64.b64encode(csv_string.encode()).decode() | |
href = f'data:text/csv;base64,{b64}' | |
return gr.HTML(f'<a href="{href}" download="chat_history.csv">Download Chat History</a>') | |
DESCRIPTION = """ # <center><b>JARVIS⚡</b></center> | |
### <center>A personal Assistant of Tony Stark for YOU | |
### <center>Voice Chat with your personal Assistant</center> | |
""" | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
select = gr.Dropdown([ | |
'Mixtral 8x7B', | |
'Llama 3 8B', | |
'Mistral 7B v0.3', | |
'Phi 3 mini', | |
], | |
value="Mistral 7B v0.3", | |
label="Model" | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=999999, | |
step=1, | |
value=0, | |
visible=False | |
) | |
input_audio = gr.Audio(label="User", sources="microphone", type="filepath") | |
output_audio = gr.Audio(label="AI", type="filepath", autoplay=True) | |
# Add a DataFrame to display the history | |
history_display = gr.DataFrame(label="Query History") | |
# Add a download button for the history | |
download_button = gr.Button("Download History") | |
download_link = gr.HTML() | |
def process_audio(audio, model, seed): | |
response = asyncio.run(respond(audio, model, seed)) | |
return response | |
input_audio.change( | |
fn=process_audio, | |
inputs=[input_audio, select, seed], | |
outputs=[output_audio] | |
) | |
# Update the history display after each interaction | |
output_audio.change(fn=display_history, outputs=[history_display]) | |
# Connect the download button to the download function | |
download_button.click(fn=download_history, outputs=[download_link]) | |
if __name__ == "__main__": | |
demo.queue(max_size=200).launch(share=True) |