importScripts("https://cdn.jsdelivr.net/pyodide/v0.24.1/full/pyodide.js");
function sendPatch(patch, buffers, msg_id) {
self.postMessage({
type: 'patch',
patch: patch,
buffers: buffers
})
}
async function startApplication() {
console.log("Loading pyodide!");
self.postMessage({type: 'status', msg: 'Loading pyodide'})
self.pyodide = await loadPyodide();
self.pyodide.globals.set("sendPatch", sendPatch);
console.log("Loaded!");
await self.pyodide.loadPackage("micropip");
const env_spec = ['https://cdn.holoviz.org/panel/wheels/bokeh-3.3.2-py3-none-any.whl', 'https://cdn.holoviz.org/panel/1.3.6/dist/wheels/panel-1.3.6-py3-none-any.whl', 'pyodide-http==0.2.1', 'holoviews', 'numpy', 'pandas', 'shapely']
for (const pkg of env_spec) {
let pkg_name;
if (pkg.endsWith('.whl')) {
pkg_name = pkg.split('/').slice(-1)[0].split('-')[0]
} else {
pkg_name = pkg
}
self.postMessage({type: 'status', msg: `Installing ${pkg_name}`})
try {
await self.pyodide.runPythonAsync(`
import micropip
await micropip.install('${pkg}');
`);
} catch(e) {
console.log(e)
self.postMessage({
type: 'status',
msg: `Error while installing ${pkg_name}`
});
}
}
console.log("Packages loaded!");
self.postMessage({type: 'status', msg: 'Executing code'})
const code = `
import asyncio
from panel.io.pyodide import init_doc, write_doc
init_doc()
"""
Source: https://awesome-panel.org/resources/commuting_flows_italian_regions/
"""
import holoviews as hv
import numpy as np
import pandas as pd
import panel as pn
from bokeh.models import HoverTool
from shapely.geometry import LineString
# Load the bokeh extension
hv.extension("bokeh")
# Set the sizing mode
pn.extension(sizing_mode="stretch_width")
# Dashboard title
DASH_TITLE = "Commuting flows between Italian Regions"
# Default colors for the dashboard
ACCENT = "#2f4f4f"
INCOMING_COLOR = "rgba(0, 108, 151, 0.75)"
OUTGOING_COLOR = "rgba(199, 81, 51, 0.75)"
INTERNAL_COLOR = "rgba(47, 79, 79, 0.55)"
# Default colors for indicators
DEFAULT_COLOR = "white"
TITLE_SIZE = "18pt"
FONT_SIZE = "20pt"
# Min/Max node size
MIN_PT_SIZE = 7
MAX_PT_SIZE = 10
# Min/Max curve width
MIN_LW = 1
MAX_LW = 10
# Dataframes dtypes
ITA_REGIONS_DTYPES = {
"cod_reg": "uint8",
"den_reg": "object",
"x": "object",
"y": "object",
}
NODES_DTYPES = {
"cod_reg": "uint8",
"x": "float64",
"y": "float64",
}
EDGES_DTYPES = {
"motivo": "object",
"interno": "bool",
"flussi": "uint32",
"reg_o": "uint8",
"reg_d": "uint8",
"x_o": "float64",
"y_o": "float64",
"x_d": "float64",
"y_d": "float64",
}
# Dictionary that maps region code to its name
ITA_REGIONS = {
1: "Piemonte",
2: "Valle d'Aosta/Vallée d'Aoste",
3: "Lombardia",
4: "Trentino-Alto Adige/Südtirol",
5: "Veneto",
6: "Friuli-Venezia Giulia",
7: "Liguria",
8: "Emilia-Romagna",
9: "Toscana",
10: "Umbria",
11: "Marche",
12: "Lazio",
13: "Abruzzo",
14: "Molise",
15: "Campania",
16: "Puglia",
17: "Basilicata",
18: "Calabria",
19: "Sicilia",
20: "Sardegna",
}
# Dictionary of options (Label/option) for commuting purpose
COMMUTING_PURPOSE = {
"Work": "Lavoro",
"Study": "Studio",
"Total": "Totale",
}
# Dashboard description
DASH_DESCR = f"""
A Panel dashboard showing incoming
and outgoing commuting flows
for work and study between Italian Regions.
The width of the curves reflects the magnitude of the flows.
Commuting data from the
15th Population and Housing Census (Istat, 2011).
Administrative boundaries from
ISTAT.
"""
CSS_FIX = """
:host(.outline) .bk-btn.bk-btn-primary.bk-active, :host(.outline) .bk-btn.bk-btn-primary:active {
color: var(--foreground-on-accent-rest) !important;
}
"""
if not CSS_FIX in pn.config.raw_css:
pn.config.raw_css.append(CSS_FIX)
def get_incoming_numind(edges, region_code, comm_purpose):
"""
Returns the total incoming commuters to the selected Region.
"""
# Get the value of incoming commuters
if comm_purpose == "Totale":
query = f"reg_d == {region_code} & interno == 0"
else:
query = f"(reg_d == {region_code} & motivo == '{comm_purpose}' & interno == 0)"
flows = edges.query(query)["flussi"].sum()
return pn.indicators.Number(
name="Incoming",
value=flows,
default_color=DEFAULT_COLOR,
styles={"background": INCOMING_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"},
title_size=TITLE_SIZE,
font_size=FONT_SIZE,
sizing_mode="stretch_width",
align="center",
css_classes=["center_number"],
)
def get_outgoing_numind(edges, region_code, comm_purpose):
"""
Returns the outgoing commuters from
the selected Region.
"""
# Get the value of outgoing commuters
if comm_purpose == "Totale":
query = f"reg_o == {region_code} & interno == 0"
else:
query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 0)"
flows = edges.query(query)["flussi"].sum()
return pn.indicators.Number(
name="Outgoing",
value=flows,
default_color=DEFAULT_COLOR,
styles={"background": OUTGOING_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"},
title_size=TITLE_SIZE,
font_size=FONT_SIZE,
sizing_mode="stretch_width",
align="center",
css_classes=["center_number"],
)
def get_internal_numind(edges, region_code, comm_purpose):
"""
Returns the number of internal commuters of
the selected Region.
"""
# Get the value of internal commuters
if comm_purpose == "Totale":
query = f"reg_o == {region_code} & interno == 1"
else:
query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 1)"
flows = edges.query(query)["flussi"].sum()
return pn.indicators.Number(
name="Internal mobility",
value=flows,
default_color=DEFAULT_COLOR,
styles={"background": INTERNAL_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"},
title_size=TITLE_SIZE,
font_size=FONT_SIZE,
sizing_mode="stretch_width",
align="center",
css_classes=["center_number"],
)
def filter_edges(edges, region_code, comm_purpose):
"""
This function filters the rows of the edges for
the selected Region and commuting purpose.
"""
if comm_purpose == "Totale":
query = f"(reg_o == {region_code} & interno == 0) |"
query += f" (reg_d == {region_code} & interno == 0)"
else:
query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 0) |"
query += f" (reg_d == {region_code} & motivo == '{comm_purpose}' & interno == 0)"
return edges.query(query)
def get_nodes(nodes, edges, region_code, comm_purpose):
"""
Get the graph's nodes for the selected Region and commuting purpose
"""
# Filter the edges by Region and commuting purpose
filt_edges = filter_edges(edges, region_code, comm_purpose)
# Find the unique values of region codes
region_codes = np.unique(filt_edges[["reg_o", "reg_d"]].values)
# Filter the nodes
nodes = nodes[nodes["cod_reg"].isin(region_codes)]
# Reoder the columns for hv.Graph
nodes = nodes[["x", "y", "cod_reg"]]
# Assign the node size
nodes["size"] = np.where(
nodes["cod_reg"] == region_code, MAX_PT_SIZE, MIN_PT_SIZE
)
# Assigns a marker to the nodes
nodes["marker"] = np.where(
nodes["cod_reg"] == region_code, "square", "circle"
)
return nodes
def get_bezier_curve(x_o, y_o, x_d, y_d, steps=25):
"""
Draw a Bézier curve defined by a start point, endpoint and a control points
Source: https://stackoverflow.com/questions/69804595/trying-to-make-a-bezier-curve-on-pygame-library
"""
# Generate the O/D linestring
od_line = LineString([(x_o, y_o), (x_d, y_d)])
# Calculate the offset distance of the control point
offset_distance = od_line.length / 2
# Create a line parallel to the original at the offset distance
offset_pline = od_line.parallel_offset(offset_distance, "left")
# Get the XY coodinates of the control point
ctrl_x = offset_pline.centroid.x
ctrl_y = offset_pline.centroid.y
# Calculate the XY coordinates of the Bézier curve
t = np.array([i * 1 / steps for i in range(0, steps + 1)])
x_coords = x_o * (1 - t) ** 2 + 2 * (1 - t) * t * ctrl_x + x_d * t**2
y_coords = y_o * (1 - t) ** 2 + 2 * (1 - t) * t * ctrl_y + y_d * t**2
return (x_coords, y_coords)
def get_edge_width(flow, min_flow, max_flow):
"""
This function calculates the width of the curves
according to the magnitude of the flow.
"""
return MIN_LW + np.power(flow - min_flow, 0.57) * (
MAX_LW - MIN_LW
) / np.power(max_flow - min_flow, 0.57)
def get_edges(nodes, edges, region_code, comm_purpose):
"""
Get the graph's edges for the selected Region and commuting purpose
"""
# Filter the edges by Region and commuting purpose
filt_edges = filter_edges(edges, region_code, comm_purpose).copy()
# Aggregate the flows by Region of origin and destination
if comm_purpose == "Totale":
filt_edges = (
filt_edges.groupby(["reg_o", "reg_d"])
.agg(
motivo=("motivo", "first"),
interno=("interno", "first"),
flussi=("flussi", "sum"),
)
.reset_index()
)
# Assign Region names
filt_edges.loc[:,"den_reg_o"] = filt_edges["reg_o"].map(ITA_REGIONS)
filt_edges.loc[:,"den_reg_d"] = filt_edges["reg_d"].map(ITA_REGIONS)
# Add xy coordinates of origin
filt_edges = filt_edges.merge(
nodes.add_suffix("_o"), left_on="reg_o", right_on="cod_reg_o"
)
# Add xy coordinates of destination
filt_edges = filt_edges.merge(
nodes.add_suffix("_d"), left_on="reg_d", right_on="cod_reg_d"
)
# Get the Bézier curve
filt_edges["curve"] = filt_edges.apply(
lambda row: get_bezier_curve(
row["x_o"], row["y_o"], row["x_d"], row["y_d"]
),
axis=1,
)
# Get the minimum/maximum flow
min_flow = filt_edges["flussi"].min()
max_flow = filt_edges["flussi"].max()
# Calculate the curve width
filt_edges["width"] = filt_edges.apply(
lambda row: get_edge_width(
row["flussi"],
min_flow,
max_flow,
),
axis=1,
)
# Assigns the color to the incoming/outgoing edges
filt_edges["color"] = np.where(
filt_edges["reg_d"] == region_code, INCOMING_COLOR, OUTGOING_COLOR
)
filt_edges = filt_edges.sort_values(by="flussi")
return filt_edges
def get_flow_map(nodes, edges, region_admin_bounds, region_code, comm_purpose):
"""
Returns a Graph showing incoming and outgoing commuting flows
for the selected Region and commuting purpose.
"""
def hook(plot, element):
"""
Custom hook for disabling x/y tick lines/labels
"""
plot.state.xaxis.major_tick_line_color = None
plot.state.xaxis.minor_tick_line_color = None
plot.state.xaxis.major_label_text_font_size = "0pt"
plot.state.yaxis.major_tick_line_color = None
plot.state.yaxis.minor_tick_line_color = None
plot.state.yaxis.major_label_text_font_size = "0pt"
# Define a custom Hover tool
flow_map_hover = HoverTool(
tooltips=[
("Origin", "@den_reg_o"),
("Destination", "@den_reg_d"),
("Commuters", "@flussi"),
]
)
# Get the Nodes of the selected Region and commuting purpose
region_graph_nodes = get_nodes(nodes, edges, region_code, comm_purpose)
# Get the Edges of the selected Region and commuting purpose
region_graph_edges = get_edges(nodes, edges, region_code, comm_purpose)
# Get the list of Bézier curves
curves = region_graph_edges["curve"].to_list()
# Get the administrative boundary of the selected Region
region_admin_bound = region_admin_bounds[
(region_admin_bounds["cod_reg"] == region_code)
].to_dict("records")
# Draw the administrative boundary using hv.Path
region_admin_bound_path = hv.Path(region_admin_bound)
region_admin_bound_path.opts(color=ACCENT, line_width=1.0)
# Build a Graph from Edges, Nodes and Bézier curves
region_flow_graph = hv.Graph(
(region_graph_edges.drop("curve", axis=1), region_graph_nodes, curves)
)
# Additional plot options
region_flow_graph.opts(
title="Incoming and outgoing commuting flows",
xlabel="",
ylabel="",
node_color="white",
node_hover_fill_color="magenta",
node_line_color=ACCENT,
node_size="size",
node_marker="marker",
edge_color="color",
edge_hover_line_color="magenta",
edge_line_width="width",
inspection_policy="edges",
tools=[flow_map_hover],
hooks=[hook],
frame_height=500,
)
# Compose the flow map
flow_map = (
hv.element.tiles.CartoLight()
* region_admin_bound_path
* region_flow_graph
)
return flow_map
# Load the edges as a Dataframe
@pn.cache
def get_edges_df():
return pd.read_json(
"https://huggingface.co/spaces/awesome-panel/commuting_flows_italy/resolve/main/edges.json",
orient="split",
dtype=EDGES_DTYPES,
)
edges_df = get_edges_df()
# Load the nodes as a Dataframe
@pn.cache
def get_nodes_df():
return pd.read_json(
"https://huggingface.co/spaces/awesome-panel/commuting_flows_italy/resolve/main/nodes.json",
orient="split",
dtype=NODES_DTYPES,
)
nodes_df = get_nodes_df()
# Load the italian regions as a Dataframe
@pn.cache
def get_region_admin_bounds_df():
return pd.read_json(
"https://huggingface.co/spaces/awesome-panel/commuting_flows_italy/resolve/main/italian_regions.json",
orient="split",
dtype=ITA_REGIONS_DTYPES,
)
region_admin_bounds_df = get_region_admin_bounds_df()
# Region selector
region_options = dict(map(reversed, ITA_REGIONS.items()))
region_options = dict(sorted(region_options.items()))
region_select = pn.widgets.Select(
name="Region:",
options=region_options,
sizing_mode="stretch_width",
)
# Toggle buttons to select the commuting purpose
purpose_select = pn.widgets.ToggleGroup(
name="",
options=COMMUTING_PURPOSE,
behavior="radio",
sizing_mode="stretch_width",
button_type="primary", button_style="outline"
)
# Description pane
descr_pane = pn.pane.HTML(DASH_DESCR, styles={"text-align": "left"})
# Numeric indicator for incoming flows
incoming_numind_bind = pn.bind(
get_incoming_numind,
edges=edges_df,
region_code=region_select,
comm_purpose=purpose_select,
)
# Numeric indicator for outgoing flows
outgoing_numind_bind = pn.bind(
get_outgoing_numind,
edges=edges_df,
region_code=region_select,
comm_purpose=purpose_select,
)
# Numeric indicator for internal flows
internal_numind_bind = pn.bind(
get_internal_numind,
edges=edges_df,
region_code=region_select,
comm_purpose=purpose_select,
)
# Flow map
flowmap_bind = pn.bind(
get_flow_map,
nodes=nodes_df,
edges=edges_df,
region_admin_bounds=region_admin_bounds_df,
region_code=region_select,
comm_purpose=purpose_select,
)
# Compose the layout
layout = pn.Row(
pn.Column(
region_select,
purpose_select,
pn.Row(incoming_numind_bind, outgoing_numind_bind),
internal_numind_bind,
descr_pane,
width=350,
),
flowmap_bind,
)
pn.template.FastListTemplate(
site="",
logo="https://huggingface.co/spaces/awesome-panel/commuting_flows_italy/resolve/main/home_work.svg",
title=DASH_TITLE,
theme="default",
theme_toggle=False,
accent=ACCENT,
neutral_color="white",
main=[layout],
main_max_width="1000px",
).servable()
await write_doc()
`
try {
const [docs_json, render_items, root_ids] = await self.pyodide.runPythonAsync(code)
self.postMessage({
type: 'render',
docs_json: docs_json,
render_items: render_items,
root_ids: root_ids
})
} catch(e) {
const traceback = `${e}`
const tblines = traceback.split('\n')
self.postMessage({
type: 'status',
msg: tblines[tblines.length-2]
});
throw e
}
}
self.onmessage = async (event) => {
const msg = event.data
if (msg.type === 'rendered') {
self.pyodide.runPythonAsync(`
from panel.io.state import state
from panel.io.pyodide import _link_docs_worker
_link_docs_worker(state.curdoc, sendPatch, setter='js')
`)
} else if (msg.type === 'patch') {
self.pyodide.globals.set('patch', msg.patch)
self.pyodide.runPythonAsync(`
state.curdoc.apply_json_patch(patch.to_py(), setter='js')
`)
self.postMessage({type: 'idle'})
} else if (msg.type === 'location') {
self.pyodide.globals.set('location', msg.location)
self.pyodide.runPythonAsync(`
import json
from panel.io.state import state
from panel.util import edit_readonly
if state.location:
loc_data = json.loads(location)
with edit_readonly(state.location):
state.location.param.update({
k: v for k, v in loc_data.items() if k in state.location.param
})
`)
}
}
startApplication()