importScripts("https://cdn.jsdelivr.net/pyodide/v0.24.1/full/pyodide.js"); function sendPatch(patch, buffers, msg_id) { self.postMessage({ type: 'patch', patch: patch, buffers: buffers }) } async function startApplication() { console.log("Loading pyodide!"); self.postMessage({type: 'status', msg: 'Loading pyodide'}) self.pyodide = await loadPyodide(); self.pyodide.globals.set("sendPatch", sendPatch); console.log("Loaded!"); await self.pyodide.loadPackage("micropip"); const env_spec = ['https://cdn.holoviz.org/panel/wheels/bokeh-3.3.2-py3-none-any.whl', 'https://cdn.holoviz.org/panel/1.3.6/dist/wheels/panel-1.3.6-py3-none-any.whl', 'pyodide-http==0.2.1', 'holoviews', 'numpy', 'pandas', 'shapely'] for (const pkg of env_spec) { let pkg_name; if (pkg.endsWith('.whl')) { pkg_name = pkg.split('/').slice(-1)[0].split('-')[0] } else { pkg_name = pkg } self.postMessage({type: 'status', msg: `Installing ${pkg_name}`}) try { await self.pyodide.runPythonAsync(` import micropip await micropip.install('${pkg}'); `); } catch(e) { console.log(e) self.postMessage({ type: 'status', msg: `Error while installing ${pkg_name}` }); } } console.log("Packages loaded!"); self.postMessage({type: 'status', msg: 'Executing code'}) const code = ` import asyncio from panel.io.pyodide import init_doc, write_doc init_doc() """ Source: https://awesome-panel.org/resources/commuting_flows_italian_regions/ """ import holoviews as hv import numpy as np import pandas as pd import panel as pn from bokeh.models import HoverTool from shapely.geometry import LineString # Load the bokeh extension hv.extension("bokeh") # Set the sizing mode pn.extension(sizing_mode="stretch_width") # Dashboard title DASH_TITLE = "Commuting flows between Italian Regions" # Default colors for the dashboard ACCENT = "#2f4f4f" INCOMING_COLOR = "rgba(0, 108, 151, 0.75)" OUTGOING_COLOR = "rgba(199, 81, 51, 0.75)" INTERNAL_COLOR = "rgba(47, 79, 79, 0.55)" # Default colors for indicators DEFAULT_COLOR = "white" TITLE_SIZE = "18pt" FONT_SIZE = "20pt" # Min/Max node size MIN_PT_SIZE = 7 MAX_PT_SIZE = 10 # Min/Max curve width MIN_LW = 1 MAX_LW = 10 # Dataframes dtypes ITA_REGIONS_DTYPES = { "cod_reg": "uint8", "den_reg": "object", "x": "object", "y": "object", } NODES_DTYPES = { "cod_reg": "uint8", "x": "float64", "y": "float64", } EDGES_DTYPES = { "motivo": "object", "interno": "bool", "flussi": "uint32", "reg_o": "uint8", "reg_d": "uint8", "x_o": "float64", "y_o": "float64", "x_d": "float64", "y_d": "float64", } # Dictionary that maps region code to its name ITA_REGIONS = { 1: "Piemonte", 2: "Valle d'Aosta/Vallée d'Aoste", 3: "Lombardia", 4: "Trentino-Alto Adige/Südtirol", 5: "Veneto", 6: "Friuli-Venezia Giulia", 7: "Liguria", 8: "Emilia-Romagna", 9: "Toscana", 10: "Umbria", 11: "Marche", 12: "Lazio", 13: "Abruzzo", 14: "Molise", 15: "Campania", 16: "Puglia", 17: "Basilicata", 18: "Calabria", 19: "Sicilia", 20: "Sardegna", } # Dictionary of options (Label/option) for commuting purpose COMMUTING_PURPOSE = { "Work": "Lavoro", "Study": "Studio", "Total": "Totale", } # Dashboard description DASH_DESCR = f"""

A Panel dashboard showing incoming and outgoing commuting flows for work and study between Italian Regions.

The width of the curves reflects the magnitude of the flows.

Commuting data from the 15th Population and Housing Census (Istat, 2011).

Administrative boundaries from ISTAT.


""" CSS_FIX = """ :host(.outline) .bk-btn.bk-btn-primary.bk-active, :host(.outline) .bk-btn.bk-btn-primary:active { color: var(--foreground-on-accent-rest) !important; } """ if not CSS_FIX in pn.config.raw_css: pn.config.raw_css.append(CSS_FIX) def get_incoming_numind(edges, region_code, comm_purpose): """ Returns the total incoming commuters to the selected Region. """ # Get the value of incoming commuters if comm_purpose == "Totale": query = f"reg_d == {region_code} & interno == 0" else: query = f"(reg_d == {region_code} & motivo == '{comm_purpose}' & interno == 0)" flows = edges.query(query)["flussi"].sum() return pn.indicators.Number( name="Incoming", value=flows, default_color=DEFAULT_COLOR, styles={"background": INCOMING_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"}, title_size=TITLE_SIZE, font_size=FONT_SIZE, sizing_mode="stretch_width", align="center", css_classes=["center_number"], ) def get_outgoing_numind(edges, region_code, comm_purpose): """ Returns the outgoing commuters from the selected Region. """ # Get the value of outgoing commuters if comm_purpose == "Totale": query = f"reg_o == {region_code} & interno == 0" else: query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 0)" flows = edges.query(query)["flussi"].sum() return pn.indicators.Number( name="Outgoing", value=flows, default_color=DEFAULT_COLOR, styles={"background": OUTGOING_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"}, title_size=TITLE_SIZE, font_size=FONT_SIZE, sizing_mode="stretch_width", align="center", css_classes=["center_number"], ) def get_internal_numind(edges, region_code, comm_purpose): """ Returns the number of internal commuters of the selected Region. """ # Get the value of internal commuters if comm_purpose == "Totale": query = f"reg_o == {region_code} & interno == 1" else: query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 1)" flows = edges.query(query)["flussi"].sum() return pn.indicators.Number( name="Internal mobility", value=flows, default_color=DEFAULT_COLOR, styles={"background": INTERNAL_COLOR, "padding": "5px 10px 5px 10px", "border-radius": "5px"}, title_size=TITLE_SIZE, font_size=FONT_SIZE, sizing_mode="stretch_width", align="center", css_classes=["center_number"], ) def filter_edges(edges, region_code, comm_purpose): """ This function filters the rows of the edges for the selected Region and commuting purpose. """ if comm_purpose == "Totale": query = f"(reg_o == {region_code} & interno == 0) |" query += f" (reg_d == {region_code} & interno == 0)" else: query = f"(reg_o == {region_code} & motivo == '{comm_purpose}' & interno == 0) |" query += f" (reg_d == {region_code} & motivo == '{comm_purpose}' & interno == 0)" return edges.query(query) def get_nodes(nodes, edges, region_code, comm_purpose): """ Get the graph's nodes for the selected Region and commuting purpose """ # Filter the edges by Region and commuting purpose filt_edges = filter_edges(edges, region_code, comm_purpose) # Find the unique values of region codes region_codes = np.unique(filt_edges[["reg_o", "reg_d"]].values) # Filter the nodes nodes = nodes[nodes["cod_reg"].isin(region_codes)] # Reoder the columns for hv.Graph nodes = nodes[["x", "y", "cod_reg"]] # Assign the node size nodes["size"] = np.where( nodes["cod_reg"] == region_code, MAX_PT_SIZE, MIN_PT_SIZE ) # Assigns a marker to the nodes nodes["marker"] = np.where( nodes["cod_reg"] == region_code, "square", "circle" ) return nodes def get_bezier_curve(x_o, y_o, x_d, y_d, steps=25): """ Draw a Bézier curve defined by a start point, endpoint and a control points Source: https://stackoverflow.com/questions/69804595/trying-to-make-a-bezier-curve-on-pygame-library """ # Generate the O/D linestring od_line = LineString([(x_o, y_o), (x_d, y_d)]) # Calculate the offset distance of the control point offset_distance = od_line.length / 2 # Create a line parallel to the original at the offset distance offset_pline = od_line.parallel_offset(offset_distance, "left") # Get the XY coodinates of the control point ctrl_x = offset_pline.centroid.x ctrl_y = offset_pline.centroid.y # Calculate the XY coordinates of the Bézier curve t = np.array([i * 1 / steps for i in range(0, steps + 1)]) x_coords = x_o * (1 - t) ** 2 + 2 * (1 - t) * t * ctrl_x + x_d * t**2 y_coords = y_o * (1 - t) ** 2 + 2 * (1 - t) * t * ctrl_y + y_d * t**2 return (x_coords, y_coords) def get_edge_width(flow, min_flow, max_flow): """ This function calculates the width of the curves according to the magnitude of the flow. """ return MIN_LW + np.power(flow - min_flow, 0.57) * ( MAX_LW - MIN_LW ) / np.power(max_flow - min_flow, 0.57) def get_edges(nodes, edges, region_code, comm_purpose): """ Get the graph's edges for the selected Region and commuting purpose """ # Filter the edges by Region and commuting purpose filt_edges = filter_edges(edges, region_code, comm_purpose).copy() # Aggregate the flows by Region of origin and destination if comm_purpose == "Totale": filt_edges = ( filt_edges.groupby(["reg_o", "reg_d"]) .agg( motivo=("motivo", "first"), interno=("interno", "first"), flussi=("flussi", "sum"), ) .reset_index() ) # Assign Region names filt_edges.loc[:,"den_reg_o"] = filt_edges["reg_o"].map(ITA_REGIONS) filt_edges.loc[:,"den_reg_d"] = filt_edges["reg_d"].map(ITA_REGIONS) # Add xy coordinates of origin filt_edges = filt_edges.merge( nodes.add_suffix("_o"), left_on="reg_o", right_on="cod_reg_o" ) # Add xy coordinates of destination filt_edges = filt_edges.merge( nodes.add_suffix("_d"), left_on="reg_d", right_on="cod_reg_d" ) # Get the Bézier curve filt_edges["curve"] = filt_edges.apply( lambda row: get_bezier_curve( row["x_o"], row["y_o"], row["x_d"], row["y_d"] ), axis=1, ) # Get the minimum/maximum flow min_flow = filt_edges["flussi"].min() max_flow = filt_edges["flussi"].max() # Calculate the curve width filt_edges["width"] = filt_edges.apply( lambda row: get_edge_width( row["flussi"], min_flow, max_flow, ), axis=1, ) # Assigns the color to the incoming/outgoing edges filt_edges["color"] = np.where( filt_edges["reg_d"] == region_code, INCOMING_COLOR, OUTGOING_COLOR ) filt_edges = filt_edges.sort_values(by="flussi") return filt_edges def get_flow_map(nodes, edges, region_admin_bounds, region_code, comm_purpose): """ Returns a Graph showing incoming and outgoing commuting flows for the selected Region and commuting purpose. """ def hook(plot, element): """ Custom hook for disabling x/y tick lines/labels """ plot.state.xaxis.major_tick_line_color = None plot.state.xaxis.minor_tick_line_color = None plot.state.xaxis.major_label_text_font_size = "0pt" plot.state.yaxis.major_tick_line_color = None plot.state.yaxis.minor_tick_line_color = None plot.state.yaxis.major_label_text_font_size = "0pt" # Define a custom Hover tool flow_map_hover = HoverTool( tooltips=[ ("Origin", "@den_reg_o"), ("Destination", "@den_reg_d"), ("Commuters", "@flussi"), ] ) # Get the Nodes of the selected Region and commuting purpose region_graph_nodes = get_nodes(nodes, edges, region_code, comm_purpose) # Get the Edges of the selected Region and commuting purpose region_graph_edges = get_edges(nodes, edges, region_code, comm_purpose) # Get the list of Bézier curves curves = region_graph_edges["curve"].to_list() # Get the administrative boundary of the selected Region region_admin_bound = region_admin_bounds[ (region_admin_bounds["cod_reg"] == region_code) ].to_dict("records") # Draw the administrative boundary using hv.Path region_admin_bound_path = hv.Path(region_admin_bound) region_admin_bound_path.opts(color=ACCENT, line_width=1.0) # Build a Graph from Edges, Nodes and Bézier curves region_flow_graph = hv.Graph( (region_graph_edges.drop("curve", axis=1), region_graph_nodes, curves) ) # Additional plot options region_flow_graph.opts( title="Incoming and outgoing commuting flows", xlabel="", ylabel="", node_color="white", node_hover_fill_color="magenta", node_line_color=ACCENT, node_size="size", node_marker="marker", edge_color="color", edge_hover_line_color="magenta", edge_line_width="width", inspection_policy="edges", tools=[flow_map_hover], hooks=[hook], frame_height=500, ) # Compose the flow map flow_map = ( hv.element.tiles.CartoLight() * region_admin_bound_path * region_flow_graph ) return flow_map # Load the edges as a Dataframe @pn.cache def get_edges_df(): return pd.read_json( "https://huggingface.co/spaces/awesome-panel/commuting_flows_italy/resolve/main/edges.json", orient="split", dtype=EDGES_DTYPES, ) edges_df = get_edges_df() # Load the nodes as a Dataframe @pn.cache def get_nodes_df(): return pd.read_json( "https://huggingface.co/spaces/awesome-panel/commuting_flows_italy/resolve/main/nodes.json", orient="split", dtype=NODES_DTYPES, ) nodes_df = get_nodes_df() # Load the italian regions as a Dataframe @pn.cache def get_region_admin_bounds_df(): return pd.read_json( "https://huggingface.co/spaces/awesome-panel/commuting_flows_italy/resolve/main/italian_regions.json", orient="split", dtype=ITA_REGIONS_DTYPES, ) region_admin_bounds_df = get_region_admin_bounds_df() # Region selector region_options = dict(map(reversed, ITA_REGIONS.items())) region_options = dict(sorted(region_options.items())) region_select = pn.widgets.Select( name="Region:", options=region_options, sizing_mode="stretch_width", ) # Toggle buttons to select the commuting purpose purpose_select = pn.widgets.ToggleGroup( name="", options=COMMUTING_PURPOSE, behavior="radio", sizing_mode="stretch_width", button_type="primary", button_style="outline" ) # Description pane descr_pane = pn.pane.HTML(DASH_DESCR, styles={"text-align": "left"}) # Numeric indicator for incoming flows incoming_numind_bind = pn.bind( get_incoming_numind, edges=edges_df, region_code=region_select, comm_purpose=purpose_select, ) # Numeric indicator for outgoing flows outgoing_numind_bind = pn.bind( get_outgoing_numind, edges=edges_df, region_code=region_select, comm_purpose=purpose_select, ) # Numeric indicator for internal flows internal_numind_bind = pn.bind( get_internal_numind, edges=edges_df, region_code=region_select, comm_purpose=purpose_select, ) # Flow map flowmap_bind = pn.bind( get_flow_map, nodes=nodes_df, edges=edges_df, region_admin_bounds=region_admin_bounds_df, region_code=region_select, comm_purpose=purpose_select, ) # Compose the layout layout = pn.Row( pn.Column( region_select, purpose_select, pn.Row(incoming_numind_bind, outgoing_numind_bind), internal_numind_bind, descr_pane, width=350, ), flowmap_bind, ) pn.template.FastListTemplate( site="", logo="https://huggingface.co/spaces/awesome-panel/commuting_flows_italy/resolve/main/home_work.svg", title=DASH_TITLE, theme="default", theme_toggle=False, accent=ACCENT, neutral_color="white", main=[layout], main_max_width="1000px", ).servable() await write_doc() ` try { const [docs_json, render_items, root_ids] = await self.pyodide.runPythonAsync(code) self.postMessage({ type: 'render', docs_json: docs_json, render_items: render_items, root_ids: root_ids }) } catch(e) { const traceback = `${e}` const tblines = traceback.split('\n') self.postMessage({ type: 'status', msg: tblines[tblines.length-2] }); throw e } } self.onmessage = async (event) => { const msg = event.data if (msg.type === 'rendered') { self.pyodide.runPythonAsync(` from panel.io.state import state from panel.io.pyodide import _link_docs_worker _link_docs_worker(state.curdoc, sendPatch, setter='js') `) } else if (msg.type === 'patch') { self.pyodide.globals.set('patch', msg.patch) self.pyodide.runPythonAsync(` state.curdoc.apply_json_patch(patch.to_py(), setter='js') `) self.postMessage({type: 'idle'}) } else if (msg.type === 'location') { self.pyodide.globals.set('location', msg.location) self.pyodide.runPythonAsync(` import json from panel.io.state import state from panel.util import edit_readonly if state.location: loc_data = json.loads(location) with edit_readonly(state.location): state.location.param.update({ k: v for k, v in loc_data.items() if k in state.location.param }) `) } } startApplication()