File size: 6,692 Bytes
1086a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py 

#Taken from: https://github.com/dbolya/tomesd

import torch
from typing import Tuple, Callable
import math

def do_nothing(x: torch.Tensor, mode:str=None):
    return x


def mps_gather_workaround(input, dim, index):
    if input.shape[-1] == 1:
        return torch.gather(
            input.unsqueeze(-1),
            dim - 1 if dim < 0 else dim,
            index.unsqueeze(-1)
        ).squeeze(-1)
    else:
        return torch.gather(input, dim, index)


def bipartite_soft_matching_random2d(metric: torch.Tensor,
                                     w: int, h: int, sx: int, sy: int, r: int,
                                     no_rand: bool = False) -> Tuple[Callable, Callable]:
    """
    Partitions the tokens into src and dst and merges r tokens from src to dst.
    Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
    Args:
     - metric [B, N, C]: metric to use for similarity
     - w: image width in tokens
     - h: image height in tokens
     - sx: stride in the x dimension for dst, must divide w
     - sy: stride in the y dimension for dst, must divide h
     - r: number of tokens to remove (by merging)
     - no_rand: if true, disable randomness (use top left corner only)
    """
    B, N, _ = metric.shape

    if r <= 0 or w == 1 or h == 1:
        return do_nothing, do_nothing

    gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
    
    with torch.no_grad():
        
        hsy, wsx = h // sy, w // sx

        # For each sy by sx kernel, randomly assign one token to be dst and the rest src
        if no_rand:
            rand_idx = torch.zeros(hsy, wsx, 1, device=metric.device, dtype=torch.int64)
        else:
            rand_idx = torch.randint(sy*sx, size=(hsy, wsx, 1), device=metric.device)
        
        # The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
        idx_buffer_view = torch.zeros(hsy, wsx, sy*sx, device=metric.device, dtype=torch.int64)
        idx_buffer_view.scatter_(dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype))
        idx_buffer_view = idx_buffer_view.view(hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx)

        # Image is not divisible by sx or sy so we need to move it into a new buffer
        if (hsy * sy) < h or (wsx * sx) < w:
            idx_buffer = torch.zeros(h, w, device=metric.device, dtype=torch.int64)
            idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view
        else:
            idx_buffer = idx_buffer_view

        # We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
        rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1)

        # We're finished with these
        del idx_buffer, idx_buffer_view

        # rand_idx is currently dst|src, so split them
        num_dst = hsy * wsx
        a_idx = rand_idx[:, num_dst:, :] # src
        b_idx = rand_idx[:, :num_dst, :] # dst

        def split(x):
            C = x.shape[-1]
            src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C))
            dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C))
            return src, dst

        # Cosine similarity between A and B
        metric = metric / metric.norm(dim=-1, keepdim=True)
        a, b = split(metric)
        scores = a @ b.transpose(-1, -2)

        # Can't reduce more than the # tokens in src
        r = min(a.shape[1], r)

        # Find the most similar greedily
        node_max, node_idx = scores.max(dim=-1)
        edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

        unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
        src_idx = edge_idx[..., :r, :]  # Merged Tokens
        dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)

    def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
        src, dst = split(x)
        n, t1, c = src.shape
        
        unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c))
        src = gather(src, dim=-2, index=src_idx.expand(n, r, c))
        dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)

        return torch.cat([unm, dst], dim=1)

    def unmerge(x: torch.Tensor) -> torch.Tensor:
        unm_len = unm_idx.shape[1]
        unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
        _, _, c = unm.shape

        src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c))

        # Combine back to the original shape
        out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype)
        out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst)
        out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm)
        out.scatter_(dim=-2, index=gather(a_idx.expand(B, a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src)

        return out

    return merge, unmerge


def get_functions(x, ratio, original_shape):
    b, c, original_h, original_w = original_shape
    original_tokens = original_h * original_w
    downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1])))
    stride_x = 2
    stride_y = 2
    max_downsample = 1

    if downsample <= max_downsample:
        w = int(math.ceil(original_w / downsample))
        h = int(math.ceil(original_h / downsample))
        r = int(x.shape[1] * ratio)
        no_rand = False
        m, u = bipartite_soft_matching_random2d(x, w, h, stride_x, stride_y, r, no_rand)
        return m, u

    nothing = lambda y: y
    return nothing, nothing



class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        self.u = None
        def tomesd_m(q, k, v, extra_options):
            #NOTE: In the reference code get_functions takes x (input of the transformer block) as the argument instead of q
            #however from my basic testing it seems that using q instead gives better results
            m, self.u = get_functions(q, ratio, extra_options["original_shape"])
            return m(q), k, v
        def tomesd_u(n, extra_options):
            return self.u(n)

        m = model.clone()
        m.set_model_attn1_patch(tomesd_m)
        m.set_model_attn1_output_patch(tomesd_u)
        return (m, )


NODE_CLASS_MAPPINGS = {
    "TomePatchModel": TomePatchModel,
}