|
from extras.BLIP.models.med import BertConfig, BertModel |
|
from transformers import BertTokenizer |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint |
|
|
|
class BLIP_ITM(nn.Module): |
|
def __init__(self, |
|
med_config = 'configs/med_config.json', |
|
image_size = 384, |
|
vit = 'base', |
|
vit_grad_ckpt = False, |
|
vit_ckpt_layer = 0, |
|
embed_dim = 256, |
|
): |
|
""" |
|
Args: |
|
med_config (str): path for the mixture of encoder-decoder model's configuration file |
|
image_size (int): input image size |
|
vit (str): model size of vision transformer |
|
""" |
|
super().__init__() |
|
|
|
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) |
|
self.tokenizer = init_tokenizer() |
|
med_config = BertConfig.from_json_file(med_config) |
|
med_config.encoder_width = vision_width |
|
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) |
|
|
|
text_width = self.text_encoder.config.hidden_size |
|
|
|
self.vision_proj = nn.Linear(vision_width, embed_dim) |
|
self.text_proj = nn.Linear(text_width, embed_dim) |
|
|
|
self.itm_head = nn.Linear(text_width, 2) |
|
|
|
|
|
def forward(self, image, caption, match_head='itm'): |
|
|
|
image_embeds = self.visual_encoder(image) |
|
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) |
|
|
|
text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35, |
|
return_tensors="pt").to(image.device) |
|
|
|
|
|
if match_head=='itm': |
|
output = self.text_encoder(text.input_ids, |
|
attention_mask = text.attention_mask, |
|
encoder_hidden_states = image_embeds, |
|
encoder_attention_mask = image_atts, |
|
return_dict = True, |
|
) |
|
itm_output = self.itm_head(output.last_hidden_state[:,0,:]) |
|
return itm_output |
|
|
|
elif match_head=='itc': |
|
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, |
|
return_dict = True, mode = 'text') |
|
image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1) |
|
text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1) |
|
|
|
sim = image_feat @ text_feat.t() |
|
return sim |
|
|
|
|
|
def blip_itm(pretrained='',**kwargs): |
|
model = BLIP_ITM(**kwargs) |
|
if pretrained: |
|
model,msg = load_checkpoint(model,pretrained) |
|
assert(len(msg.missing_keys)==0) |
|
return model |
|
|