|
import torch |
|
|
|
import torch.nn.functional as F |
|
from contextlib import contextmanager |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
from ldm_patched.ldm.modules.distributions.distributions import DiagonalGaussianDistribution |
|
|
|
from ldm_patched.ldm.util import instantiate_from_config |
|
from ldm_patched.ldm.modules.ema import LitEma |
|
|
|
class DiagonalGaussianRegularizer(torch.nn.Module): |
|
def __init__(self, sample: bool = True): |
|
super().__init__() |
|
self.sample = sample |
|
|
|
def get_trainable_parameters(self) -> Any: |
|
yield from () |
|
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: |
|
log = dict() |
|
posterior = DiagonalGaussianDistribution(z) |
|
if self.sample: |
|
z = posterior.sample() |
|
else: |
|
z = posterior.mode() |
|
kl_loss = posterior.kl() |
|
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] |
|
log["kl_loss"] = kl_loss |
|
return z, log |
|
|
|
|
|
class AbstractAutoencoder(torch.nn.Module): |
|
""" |
|
This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators, |
|
unCLIP models, etc. Hence, it is fairly general, and specific features |
|
(e.g. discriminator training, encoding, decoding) must be implemented in subclasses. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
ema_decay: Union[None, float] = None, |
|
monitor: Union[None, str] = None, |
|
input_key: str = "jpg", |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.input_key = input_key |
|
self.use_ema = ema_decay is not None |
|
if monitor is not None: |
|
self.monitor = monitor |
|
|
|
if self.use_ema: |
|
self.model_ema = LitEma(self, decay=ema_decay) |
|
logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") |
|
|
|
def get_input(self, batch) -> Any: |
|
raise NotImplementedError() |
|
|
|
def on_train_batch_end(self, *args, **kwargs): |
|
|
|
if self.use_ema: |
|
self.model_ema(self) |
|
|
|
@contextmanager |
|
def ema_scope(self, context=None): |
|
if self.use_ema: |
|
self.model_ema.store(self.parameters()) |
|
self.model_ema.copy_to(self) |
|
if context is not None: |
|
logpy.info(f"{context}: Switched to EMA weights") |
|
try: |
|
yield None |
|
finally: |
|
if self.use_ema: |
|
self.model_ema.restore(self.parameters()) |
|
if context is not None: |
|
logpy.info(f"{context}: Restored training weights") |
|
|
|
def encode(self, *args, **kwargs) -> torch.Tensor: |
|
raise NotImplementedError("encode()-method of abstract base class called") |
|
|
|
def decode(self, *args, **kwargs) -> torch.Tensor: |
|
raise NotImplementedError("decode()-method of abstract base class called") |
|
|
|
def instantiate_optimizer_from_config(self, params, lr, cfg): |
|
logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config") |
|
return get_obj_from_str(cfg["target"])( |
|
params, lr=lr, **cfg.get("params", dict()) |
|
) |
|
|
|
def configure_optimizers(self) -> Any: |
|
raise NotImplementedError() |
|
|
|
|
|
class AutoencodingEngine(AbstractAutoencoder): |
|
""" |
|
Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL |
|
(we also restore them explicitly as special cases for legacy reasons). |
|
Regularizations such as KL or VQ are moved to the regularizer class. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
encoder_config: Dict, |
|
decoder_config: Dict, |
|
regularizer_config: Dict, |
|
**kwargs, |
|
): |
|
super().__init__(*args, **kwargs) |
|
|
|
self.encoder: torch.nn.Module = instantiate_from_config(encoder_config) |
|
self.decoder: torch.nn.Module = instantiate_from_config(decoder_config) |
|
self.regularization: AbstractRegularizer = instantiate_from_config( |
|
regularizer_config |
|
) |
|
|
|
def get_last_layer(self): |
|
return self.decoder.get_last_layer() |
|
|
|
def encode( |
|
self, |
|
x: torch.Tensor, |
|
return_reg_log: bool = False, |
|
unregularized: bool = False, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: |
|
z = self.encoder(x) |
|
if unregularized: |
|
return z, dict() |
|
z, reg_log = self.regularization(z) |
|
if return_reg_log: |
|
return z, reg_log |
|
return z |
|
|
|
def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor: |
|
x = self.decoder(z, **kwargs) |
|
return x |
|
|
|
def forward( |
|
self, x: torch.Tensor, **additional_decode_kwargs |
|
) -> Tuple[torch.Tensor, torch.Tensor, dict]: |
|
z, reg_log = self.encode(x, return_reg_log=True) |
|
dec = self.decode(z, **additional_decode_kwargs) |
|
return z, dec, reg_log |
|
|
|
|
|
class AutoencodingEngineLegacy(AutoencodingEngine): |
|
def __init__(self, embed_dim: int, **kwargs): |
|
self.max_batch_size = kwargs.pop("max_batch_size", None) |
|
ddconfig = kwargs.pop("ddconfig") |
|
super().__init__( |
|
encoder_config={ |
|
"target": "ldm_patched.ldm.modules.diffusionmodules.model.Encoder", |
|
"params": ddconfig, |
|
}, |
|
decoder_config={ |
|
"target": "ldm_patched.ldm.modules.diffusionmodules.model.Decoder", |
|
"params": ddconfig, |
|
}, |
|
**kwargs, |
|
) |
|
self.quant_conv = torch.nn.Conv2d( |
|
(1 + ddconfig["double_z"]) * ddconfig["z_channels"], |
|
(1 + ddconfig["double_z"]) * embed_dim, |
|
1, |
|
) |
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) |
|
self.embed_dim = embed_dim |
|
|
|
def get_autoencoder_params(self) -> list: |
|
params = super().get_autoencoder_params() |
|
return params |
|
|
|
def encode( |
|
self, x: torch.Tensor, return_reg_log: bool = False |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]: |
|
if self.max_batch_size is None: |
|
z = self.encoder(x) |
|
z = self.quant_conv(z) |
|
else: |
|
N = x.shape[0] |
|
bs = self.max_batch_size |
|
n_batches = int(math.ceil(N / bs)) |
|
z = list() |
|
for i_batch in range(n_batches): |
|
z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs]) |
|
z_batch = self.quant_conv(z_batch) |
|
z.append(z_batch) |
|
z = torch.cat(z, 0) |
|
|
|
z, reg_log = self.regularization(z) |
|
if return_reg_log: |
|
return z, reg_log |
|
return z |
|
|
|
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor: |
|
if self.max_batch_size is None: |
|
dec = self.post_quant_conv(z) |
|
dec = self.decoder(dec, **decoder_kwargs) |
|
else: |
|
N = z.shape[0] |
|
bs = self.max_batch_size |
|
n_batches = int(math.ceil(N / bs)) |
|
dec = list() |
|
for i_batch in range(n_batches): |
|
dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs]) |
|
dec_batch = self.decoder(dec_batch, **decoder_kwargs) |
|
dec.append(dec_batch) |
|
dec = torch.cat(dec, 0) |
|
|
|
return dec |
|
|
|
|
|
class AutoencoderKL(AutoencodingEngineLegacy): |
|
def __init__(self, **kwargs): |
|
if "lossconfig" in kwargs: |
|
kwargs["loss_config"] = kwargs.pop("lossconfig") |
|
super().__init__( |
|
regularizer_config={ |
|
"target": ( |
|
"ldm_patched.ldm.models.autoencoder.DiagonalGaussianRegularizer" |
|
) |
|
}, |
|
**kwargs, |
|
) |
|
|