|
import os |
|
import torch |
|
import librosa |
|
import numpy as np |
|
import gradio as gr |
|
from sonics import HFAudioClassifier |
|
|
|
|
|
MODEL_TYPES = ["SpecTTTra-α", "SpecTTTra-β", "SpecTTTra-γ"] |
|
DURATIONS = ["5s", "120s"] |
|
|
|
|
|
def get_model_id(model_type, duration): |
|
model_map = { |
|
"SpecTTTra-α-5s": "awsaf49/sonics-spectttra-alpha-5s", |
|
"SpecTTTra-β-5s": "awsaf49/sonics-spectttra-beta-5s", |
|
"SpecTTTra-γ-5s": "awsaf49/sonics-spectttra-gamma-5s", |
|
"SpecTTTra-α-120s": "awsaf49/sonics-spectttra-alpha-120s", |
|
"SpecTTTra-β-120s": "awsaf49/sonics-spectttra-beta-120s", |
|
"SpecTTTra-γ-120s": "awsaf49/sonics-spectttra-gamma-120s", |
|
} |
|
key = f"{model_type}-{duration}" |
|
return model_map[key] |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model_cache = {} |
|
|
|
def load_model(model_type, duration): |
|
"""Load model if not already cached""" |
|
model_key = f"{model_type}-{duration}" |
|
if model_key not in model_cache: |
|
model_id = get_model_id(model_type, duration) |
|
model = HFAudioClassifier.from_pretrained(model_id) |
|
model = model.to(device) |
|
model.eval() |
|
model_cache[model_key] = model |
|
return model_cache[model_key] |
|
|
|
|
|
def process_audio(audio_path, model_type, duration): |
|
"""Process audio file and return prediction""" |
|
try: |
|
model = load_model(model_type, duration) |
|
max_time = model.config.audio.max_time |
|
|
|
|
|
audio, sr = librosa.load(audio_path, sr=16000) |
|
chunk_samples = int(max_time * sr) |
|
total_chunks = len(audio) // chunk_samples |
|
middle_chunk_idx = total_chunks // 2 |
|
|
|
|
|
start = middle_chunk_idx * chunk_samples |
|
end = start + chunk_samples |
|
chunk = audio[start:end] |
|
|
|
if len(chunk) < chunk_samples: |
|
chunk = np.pad(chunk, (0, chunk_samples - len(chunk))) |
|
|
|
|
|
with torch.no_grad(): |
|
chunk = torch.from_numpy(chunk).float().to(device) |
|
pred = model(chunk.unsqueeze(0)) |
|
prob = torch.sigmoid(pred).cpu().numpy()[0] |
|
|
|
real_prob = 1 - prob |
|
fake_prob = prob |
|
|
|
|
|
return { |
|
"Real": float(real_prob), |
|
"Fake": float(fake_prob) |
|
} |
|
|
|
except Exception as e: |
|
return {"Error": str(e)} |
|
|
|
|
|
def predict(audio_file, model_type, duration): |
|
"""Gradio interface function""" |
|
if audio_file is None: |
|
return {"Message": "Please upload an audio file"} |
|
return process_audio(audio_file, model_type, duration) |
|
|
|
|
|
|
|
css = """ |
|
/* Custom CSS that works with Ocean theme */ |
|
.sonics-header { |
|
text-align: center; |
|
padding: 20px; |
|
margin-bottom: 20px; |
|
border-radius: 10px; |
|
} |
|
|
|
.sonics-logo { |
|
max-width: 150px; |
|
border-radius: 10px; |
|
box-shadow: 0 4px 8px rgba(0,0,0,0.3); |
|
} |
|
|
|
.sonics-title { |
|
font-size: 28px; |
|
margin-bottom: 10px; |
|
} |
|
|
|
.sonics-subtitle { |
|
margin-bottom: 15px; |
|
} |
|
|
|
.sonics-description { |
|
font-size: 16px; |
|
margin: 0; |
|
} |
|
|
|
/* Resource links styling */ |
|
.resource-links { |
|
display: flex; |
|
justify-content: center; |
|
flex-wrap: wrap; |
|
gap: 8px; |
|
margin-bottom: 25px; |
|
} |
|
|
|
.resource-link { |
|
background-color: #222222; |
|
color: #4aedd6; |
|
border: 1px solid #333333; |
|
padding: 8px 16px; |
|
border-radius: 20px; |
|
margin: 5px; |
|
text-decoration: none; |
|
display: inline-block; |
|
font-weight: 500; |
|
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.3); |
|
transition: all 0.2s ease; |
|
} |
|
|
|
.resource-link:hover { |
|
background-color: #333333; |
|
transform: translateY(-2px); |
|
box-shadow: 0 3px 6px rgba(0, 0, 0, 0.4); |
|
transition: all 0.2s ease; |
|
} |
|
|
|
.resource-link-icon { |
|
margin-right: 5px; |
|
} |
|
|
|
/* Footer styling */ |
|
.sonics-footer { |
|
text-align: center; |
|
margin-top: 30px; |
|
padding: 15px; |
|
} |
|
|
|
/* Selectors wrapper for side-by-side appearance */ |
|
.selectors-wrapper { |
|
display: flex; |
|
gap: 10px; |
|
} |
|
.selectors-wrapper > div { |
|
flex: 1; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo: |
|
|
|
gr.HTML( |
|
""" |
|
<div class="sonics-header"> |
|
<div style="display: flex; justify-content: center; margin-bottom: 20px;"> |
|
<img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg" class="sonics-logo"> |
|
</div> |
|
<h1 class="sonics-title">SONICS: Synthetic Or Not - Identifying Counterfeit Songs</h1> |
|
<h3 class="sonics-subtitle">ICLR 2025 [Poster]</h3> |
|
<p class="sonics-description"> |
|
Detect if a song is real or AI-generated with our state-of-the-art models. |
|
Simply upload an audio file to verify its authenticity! |
|
</p> |
|
</div> |
|
""" |
|
) |
|
|
|
|
|
gr.HTML( |
|
""" |
|
<div class="resource-links"> |
|
<a href="https://openreview.net/forum?id=PY7KSh29Z8" target="_blank" class="resource-link"> |
|
<span class="resource-link-icon">📄</span>Paper |
|
</a> |
|
<a href="https://huggingface.co/datasets/awsaf49/sonics" target="_blank" class="resource-link"> |
|
<span class="resource-link-icon">🎵</span>Dataset |
|
</a> |
|
<a href="https://huggingface.co/collections/awsaf49/sonics-spectttra-67bb6517b3920fd18e409013" target="_blank" class="resource-link"> |
|
<span class="resource-link-icon">🤖</span>Models |
|
</a> |
|
<a href="https://arxiv.org/abs/2408.14080" target="_blank" class="resource-link"> |
|
<span class="resource-link-icon">🔬</span>ArXiv |
|
</a> |
|
<a href="https://github.com/awsaf49/sonics" target="_blank" class="resource-link"> |
|
<span class="resource-link-icon">💻</span>GitHub |
|
</a> |
|
</div> |
|
""" |
|
) |
|
|
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(): |
|
audio_input = gr.Audio( |
|
label="Upload Audio File", |
|
type="filepath", |
|
elem_id="audio_input" |
|
) |
|
|
|
|
|
with gr.Row(elem_classes="selectors-wrapper"): |
|
model_dropdown = gr.Dropdown( |
|
choices=MODEL_TYPES, |
|
value="SpecTTTra-γ", |
|
label="Select Model", |
|
elem_id="model_dropdown" |
|
) |
|
|
|
duration_dropdown = gr.Dropdown( |
|
choices=DURATIONS, |
|
value="5s", |
|
label="Select Duration", |
|
elem_id="duration_dropdown" |
|
) |
|
|
|
submit_btn = gr.Button( |
|
"✨ Analyze Audio", |
|
elem_id="submit_btn", |
|
variant="primary" |
|
) |
|
|
|
with gr.Column(): |
|
|
|
output = gr.Label( |
|
label="Analysis Result", |
|
num_top_classes=2, |
|
elem_id="output" |
|
) |
|
|
|
with gr.Accordion("How It Works", open=True): |
|
gr.Markdown(""" |
|
### The SONICS classifier |
|
|
|
The SONICS classifier analyzes your audio to determine if it's an authentic song (human created) or generated by AI. Our models are trained on a diverse dataset of real and AI-generated songs from Suno and Udio. |
|
|
|
### Models available: |
|
- **SpecTTTra-γ**: Optimized for speed |
|
- **SpecTTTra-β**: Balanced performance |
|
- **SpecTTTra-α**: Highest accuracy |
|
|
|
### Duration variants: |
|
- **5s**: Analyzes a 5-second clip (faster) |
|
- **120s**: Analyzes up to 2 minutes (more accurate) |
|
""") |
|
|
|
|
|
with gr.Accordion("Example Audio Files", open=True): |
|
gr.Examples( |
|
examples=[ |
|
["example/real_song.mp3", "SpecTTTra-γ", "5s"], |
|
["example/fake_song.mp3", "SpecTTTra-γ", "5s"], |
|
], |
|
inputs=[audio_input, model_dropdown, duration_dropdown], |
|
outputs=[output], |
|
fn=predict, |
|
cache_examples=True, |
|
) |
|
|
|
|
|
gr.HTML( |
|
""" |
|
<div class="sonics-footer"> |
|
<p>SONICS: Synthetic Or Not - Identifying Counterfeit Songs | ICLR 2025</p> |
|
<p style="font-size: 12px;">For research purposes only</p> |
|
</div> |
|
""" |
|
) |
|
|
|
|
|
submit_btn.click(fn=predict, inputs=[audio_input, model_dropdown, duration_dropdown], outputs=[output]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |