awsaf49's picture
add: option for model and duration separately
efdd97c verified
import os
import torch
import librosa
import numpy as np
import gradio as gr
from sonics import HFAudioClassifier
# Restructured model configurations for separate selectors
MODEL_TYPES = ["SpecTTTra-α", "SpecTTTra-β", "SpecTTTra-γ"]
DURATIONS = ["5s", "120s"]
# Mapping for model IDs
def get_model_id(model_type, duration):
model_map = {
"SpecTTTra-α-5s": "awsaf49/sonics-spectttra-alpha-5s",
"SpecTTTra-β-5s": "awsaf49/sonics-spectttra-beta-5s",
"SpecTTTra-γ-5s": "awsaf49/sonics-spectttra-gamma-5s",
"SpecTTTra-α-120s": "awsaf49/sonics-spectttra-alpha-120s",
"SpecTTTra-β-120s": "awsaf49/sonics-spectttra-beta-120s",
"SpecTTTra-γ-120s": "awsaf49/sonics-spectttra-gamma-120s",
}
key = f"{model_type}-{duration}"
return model_map[key]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_cache = {}
def load_model(model_type, duration):
"""Load model if not already cached"""
model_key = f"{model_type}-{duration}"
if model_key not in model_cache:
model_id = get_model_id(model_type, duration)
model = HFAudioClassifier.from_pretrained(model_id)
model = model.to(device)
model.eval()
model_cache[model_key] = model
return model_cache[model_key]
def process_audio(audio_path, model_type, duration):
"""Process audio file and return prediction"""
try:
model = load_model(model_type, duration)
max_time = model.config.audio.max_time
# Load and process audio
audio, sr = librosa.load(audio_path, sr=16000)
chunk_samples = int(max_time * sr)
total_chunks = len(audio) // chunk_samples
middle_chunk_idx = total_chunks // 2
# Extract middle chunk
start = middle_chunk_idx * chunk_samples
end = start + chunk_samples
chunk = audio[start:end]
if len(chunk) < chunk_samples:
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
# Get prediction
with torch.no_grad():
chunk = torch.from_numpy(chunk).float().to(device)
pred = model(chunk.unsqueeze(0))
prob = torch.sigmoid(pred).cpu().numpy()[0]
real_prob = 1 - prob
fake_prob = prob
# Return formatted results
return {
"Real": float(real_prob),
"Fake": float(fake_prob)
}
except Exception as e:
return {"Error": str(e)}
def predict(audio_file, model_type, duration):
"""Gradio interface function"""
if audio_file is None:
return {"Message": "Please upload an audio file"}
return process_audio(audio_file, model_type, duration)
# Updated CSS with better color scheme for resource links
css = """
/* Custom CSS that works with Ocean theme */
.sonics-header {
text-align: center;
padding: 20px;
margin-bottom: 20px;
border-radius: 10px;
}
.sonics-logo {
max-width: 150px;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0,0,0,0.3);
}
.sonics-title {
font-size: 28px;
margin-bottom: 10px;
}
.sonics-subtitle {
margin-bottom: 15px;
}
.sonics-description {
font-size: 16px;
margin: 0;
}
/* Resource links styling */
.resource-links {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 8px;
margin-bottom: 25px;
}
.resource-link {
background-color: #222222;
color: #4aedd6;
border: 1px solid #333333;
padding: 8px 16px;
border-radius: 20px;
margin: 5px;
text-decoration: none;
display: inline-block;
font-weight: 500;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.3);
transition: all 0.2s ease;
}
.resource-link:hover {
background-color: #333333;
transform: translateY(-2px);
box-shadow: 0 3px 6px rgba(0, 0, 0, 0.4);
transition: all 0.2s ease;
}
.resource-link-icon {
margin-right: 5px;
}
/* Footer styling */
.sonics-footer {
text-align: center;
margin-top: 30px;
padding: 15px;
}
/* Selectors wrapper for side-by-side appearance */
.selectors-wrapper {
display: flex;
gap: 10px;
}
.selectors-wrapper > div {
flex: 1;
}
"""
# Create Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo:
# Title and Logo
gr.HTML(
"""
<div class="sonics-header">
<div style="display: flex; justify-content: center; margin-bottom: 20px;">
<img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg" class="sonics-logo">
</div>
<h1 class="sonics-title">SONICS: Synthetic Or Not - Identifying Counterfeit Songs</h1>
<h3 class="sonics-subtitle">ICLR 2025 [Poster]</h3>
<p class="sonics-description">
Detect if a song is real or AI-generated with our state-of-the-art models.
Simply upload an audio file to verify its authenticity!
</p>
</div>
"""
)
# Resource Links - Updated with custom styling to match screenshot
gr.HTML(
"""
<div class="resource-links">
<a href="https://openreview.net/forum?id=PY7KSh29Z8" target="_blank" class="resource-link">
<span class="resource-link-icon">📄</span>Paper
</a>
<a href="https://huggingface.co/datasets/awsaf49/sonics" target="_blank" class="resource-link">
<span class="resource-link-icon">🎵</span>Dataset
</a>
<a href="https://huggingface.co/collections/awsaf49/sonics-spectttra-67bb6517b3920fd18e409013" target="_blank" class="resource-link">
<span class="resource-link-icon">🤖</span>Models
</a>
<a href="https://arxiv.org/abs/2408.14080" target="_blank" class="resource-link">
<span class="resource-link-icon">🔬</span>ArXiv
</a>
<a href="https://github.com/awsaf49/sonics" target="_blank" class="resource-link">
<span class="resource-link-icon">💻</span>GitHub
</a>
</div>
"""
)
# Main Interface
with gr.Row(equal_height=True):
with gr.Column():
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
elem_id="audio_input"
)
# Add CSS class to create a wrapper for side-by-side dropdowns
with gr.Row(elem_classes="selectors-wrapper"):
model_dropdown = gr.Dropdown(
choices=MODEL_TYPES,
value="SpecTTTra-γ",
label="Select Model",
elem_id="model_dropdown"
)
duration_dropdown = gr.Dropdown(
choices=DURATIONS,
value="5s",
label="Select Duration",
elem_id="duration_dropdown"
)
submit_btn = gr.Button(
"✨ Analyze Audio",
elem_id="submit_btn",
variant="primary"
)
with gr.Column():
# Define output before using it in Examples
output = gr.Label(
label="Analysis Result",
num_top_classes=2,
elem_id="output"
)
with gr.Accordion("How It Works", open=True):
gr.Markdown("""
### The SONICS classifier
The SONICS classifier analyzes your audio to determine if it's an authentic song (human created) or generated by AI. Our models are trained on a diverse dataset of real and AI-generated songs from Suno and Udio.
### Models available:
- **SpecTTTra-γ**: Optimized for speed
- **SpecTTTra-β**: Balanced performance
- **SpecTTTra-α**: Highest accuracy
### Duration variants:
- **5s**: Analyzes a 5-second clip (faster)
- **120s**: Analyzes up to 2 minutes (more accurate)
""")
# Add Examples section after output is defined
with gr.Accordion("Example Audio Files", open=True):
gr.Examples(
examples=[
["example/real_song.mp3", "SpecTTTra-γ", "5s"],
["example/fake_song.mp3", "SpecTTTra-γ", "5s"],
],
inputs=[audio_input, model_dropdown, duration_dropdown],
outputs=[output],
fn=predict,
cache_examples=True,
)
# Footer
gr.HTML(
"""
<div class="sonics-footer">
<p>SONICS: Synthetic Or Not - Identifying Counterfeit Songs | ICLR 2025</p>
<p style="font-size: 12px;">For research purposes only</p>
</div>
"""
)
# Prediction handling
submit_btn.click(fn=predict, inputs=[audio_input, model_dropdown, duration_dropdown], outputs=[output])
if __name__ == "__main__":
demo.launch()