import random | |
import numpy as np | |
import torch | |
import os | |
def set_seed(seed, cudnn=False): | |
os.environ["PYTHONHASHSEED"] = str(seed) | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
# May affect performance ref: https://pytorch.org/docs/stable/notes/randomness.html | |
if torch.backends.cudnn.is_available and cudnn: | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
def worker_init_fn(worker_id): | |
np.random.seed(np.random.get_state()[1][0] + worker_id) | |