example added + colors
Browse files- .gitattributes +1 -0
- app.py +202 -48
- example/fake_song.mp3 +3 -0
- example/real_song.mp3 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -18,6 +18,7 @@ MODEL_IDS = {
|
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
model_cache = {}
|
20 |
|
|
|
21 |
def load_model(model_name):
|
22 |
"""Load model if not already cached"""
|
23 |
if model_name not in model_cache:
|
@@ -28,109 +29,262 @@ def load_model(model_name):
|
|
28 |
model_cache[model_name] = model
|
29 |
return model_cache[model_name]
|
30 |
|
|
|
31 |
def process_audio(audio_path, model_name):
|
32 |
"""Process audio file and return prediction"""
|
33 |
try:
|
34 |
model = load_model(model_name)
|
35 |
max_time = model.config.audio.max_time
|
36 |
-
|
37 |
# Load and process audio
|
38 |
audio, sr = librosa.load(audio_path, sr=16000)
|
39 |
chunk_samples = int(max_time * sr)
|
40 |
total_chunks = len(audio) // chunk_samples
|
41 |
middle_chunk_idx = total_chunks // 2
|
42 |
-
|
43 |
# Extract middle chunk
|
44 |
start = middle_chunk_idx * chunk_samples
|
45 |
end = start + chunk_samples
|
46 |
chunk = audio[start:end]
|
47 |
-
|
48 |
if len(chunk) < chunk_samples:
|
49 |
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
|
50 |
-
|
51 |
# Get prediction
|
52 |
with torch.no_grad():
|
53 |
chunk = torch.from_numpy(chunk).float().to(device)
|
54 |
pred = model(chunk.unsqueeze(0))
|
55 |
prob = torch.sigmoid(pred).cpu().numpy()[0]
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
except Exception as e:
|
60 |
-
return {"Error": str(e)}
|
|
|
61 |
|
62 |
def predict(audio_file, model_name):
|
63 |
"""Gradio interface function"""
|
64 |
if audio_file is None:
|
65 |
-
return {"Message": "Please upload an audio file"}
|
66 |
return process_audio(audio_file, model_name)
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
# Create Gradio interface
|
69 |
-
with gr.Blocks() as demo:
|
70 |
# Title, Subtitle, and Logo
|
71 |
gr.HTML(
|
72 |
"""
|
73 |
-
<div
|
74 |
-
<
|
75 |
-
|
76 |
-
|
|
|
|
|
77 |
<h3>ICLR 2025 [Poster]</h3>
|
78 |
-
<p style="font-size: 1.1em; color: #
|
79 |
-
Detect if a song is real or AI-generated
|
80 |
-
|
81 |
</p>
|
82 |
</div>
|
83 |
"""
|
84 |
)
|
85 |
-
|
86 |
-
#
|
87 |
-
# with gr.Row():
|
88 |
-
# paper_radio = gr.Radio(
|
89 |
-
# choices=["Paper", "Dataset", "ArXiv", "GitHub"],
|
90 |
-
# label="Resources",
|
91 |
-
# info="Click to visit respective links"
|
92 |
-
# )
|
93 |
-
|
94 |
gr.HTML(
|
95 |
"""
|
96 |
-
<div
|
97 |
-
<
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
</div>
|
105 |
"""
|
106 |
)
|
107 |
-
|
108 |
# Main Interface
|
109 |
-
with gr.Row():
|
110 |
with gr.Column():
|
111 |
audio_input = gr.Audio(
|
112 |
-
label="Upload Audio File",
|
113 |
-
type="filepath"
|
|
|
114 |
)
|
|
|
115 |
model_dropdown = gr.Dropdown(
|
116 |
choices=list(MODEL_IDS.keys()),
|
117 |
value="SpecTTTra-Ξ³ (5s)",
|
118 |
-
label="Select Model"
|
|
|
119 |
)
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
122 |
with gr.Column():
|
|
|
123 |
output = gr.Label(
|
124 |
-
label="Analysis Result",
|
125 |
-
num_top_classes=2
|
|
|
|
|
126 |
)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
)
|
134 |
|
|
|
|
|
|
|
135 |
if __name__ == "__main__":
|
136 |
demo.launch()
|
|
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
model_cache = {}
|
20 |
|
21 |
+
|
22 |
def load_model(model_name):
|
23 |
"""Load model if not already cached"""
|
24 |
if model_name not in model_cache:
|
|
|
29 |
model_cache[model_name] = model
|
30 |
return model_cache[model_name]
|
31 |
|
32 |
+
|
33 |
def process_audio(audio_path, model_name):
|
34 |
"""Process audio file and return prediction"""
|
35 |
try:
|
36 |
model = load_model(model_name)
|
37 |
max_time = model.config.audio.max_time
|
38 |
+
|
39 |
# Load and process audio
|
40 |
audio, sr = librosa.load(audio_path, sr=16000)
|
41 |
chunk_samples = int(max_time * sr)
|
42 |
total_chunks = len(audio) // chunk_samples
|
43 |
middle_chunk_idx = total_chunks // 2
|
44 |
+
|
45 |
# Extract middle chunk
|
46 |
start = middle_chunk_idx * chunk_samples
|
47 |
end = start + chunk_samples
|
48 |
chunk = audio[start:end]
|
49 |
+
|
50 |
if len(chunk) < chunk_samples:
|
51 |
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
|
52 |
+
|
53 |
# Get prediction
|
54 |
with torch.no_grad():
|
55 |
chunk = torch.from_numpy(chunk).float().to(device)
|
56 |
pred = model(chunk.unsqueeze(0))
|
57 |
prob = torch.sigmoid(pred).cpu().numpy()[0]
|
58 |
+
|
59 |
+
real_prob = 1 - prob
|
60 |
+
fake_prob = prob
|
61 |
+
|
62 |
+
# Return formatted results with emojis
|
63 |
+
return {
|
64 |
+
"π΅ Real": float(real_prob),
|
65 |
+
"π€ Fake": float(fake_prob)
|
66 |
+
}
|
67 |
|
68 |
except Exception as e:
|
69 |
+
return {"β Error": str(e)}
|
70 |
+
|
71 |
|
72 |
def predict(audio_file, model_name):
|
73 |
"""Gradio interface function"""
|
74 |
if audio_file is None:
|
75 |
+
return {"β οΈ Message": "Please upload an audio file"}
|
76 |
return process_audio(audio_file, model_name)
|
77 |
|
78 |
+
|
79 |
+
# Custom CSS for styling
|
80 |
+
css = """
|
81 |
+
:root {
|
82 |
+
--primary-color: #6366f1;
|
83 |
+
--secondary-color: #8b5cf6;
|
84 |
+
--accent-color: #ec4899;
|
85 |
+
--background-color: #f8fafc;
|
86 |
+
--text-color: #1e293b;
|
87 |
+
--border-radius: 10px;
|
88 |
+
}
|
89 |
+
|
90 |
+
.gradio-container {
|
91 |
+
background-color: var(--background-color);
|
92 |
+
}
|
93 |
+
|
94 |
+
.gr-button {
|
95 |
+
background: linear-gradient(90deg, var(--primary-color), var(--secondary-color));
|
96 |
+
border: none !important;
|
97 |
+
color: white !important;
|
98 |
+
border-radius: var(--border-radius) !important;
|
99 |
+
}
|
100 |
+
|
101 |
+
.gr-button:hover {
|
102 |
+
background: linear-gradient(90deg, var(--secondary-color), var(--accent-color));
|
103 |
+
transform: translateY(-2px);
|
104 |
+
box-shadow: 0 10px 20px rgba(0,0,0,0.1);
|
105 |
+
transition: all 0.3s ease;
|
106 |
+
}
|
107 |
+
|
108 |
+
.gr-form {
|
109 |
+
border-radius: var(--border-radius) !important;
|
110 |
+
border: 1px solid #e2e8f0 !important;
|
111 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.05) !important;
|
112 |
+
}
|
113 |
+
|
114 |
+
.footer {
|
115 |
+
margin-top: 20px;
|
116 |
+
text-align: center;
|
117 |
+
font-size: 0.9em;
|
118 |
+
color: #64748b;
|
119 |
+
}
|
120 |
+
|
121 |
+
.gradient-text {
|
122 |
+
background: linear-gradient(90deg, var(--primary-color), var(--accent-color));
|
123 |
+
-webkit-background-clip: text;
|
124 |
+
-webkit-text-fill-color: transparent;
|
125 |
+
background-clip: text;
|
126 |
+
text-fill-color: transparent;
|
127 |
+
}
|
128 |
+
|
129 |
+
.logo-container {
|
130 |
+
display: flex;
|
131 |
+
justify-content: center;
|
132 |
+
margin-bottom: 1rem;
|
133 |
+
}
|
134 |
+
|
135 |
+
.header-container {
|
136 |
+
text-align: center;
|
137 |
+
margin-bottom: 2rem;
|
138 |
+
padding: 1.5rem;
|
139 |
+
background: rgba(255, 255, 255, 0.8);
|
140 |
+
border-radius: var(--border-radius);
|
141 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.05);
|
142 |
+
}
|
143 |
+
|
144 |
+
.resource-links {
|
145 |
+
display: flex;
|
146 |
+
justify-content: center;
|
147 |
+
gap: 1rem;
|
148 |
+
flex-wrap: wrap;
|
149 |
+
margin-bottom: 1.5rem;
|
150 |
+
}
|
151 |
+
|
152 |
+
.resource-link {
|
153 |
+
display: inline-block;
|
154 |
+
padding: 0.5rem 1rem;
|
155 |
+
background: white;
|
156 |
+
border-radius: var(--border-radius);
|
157 |
+
color: var(--primary-color);
|
158 |
+
text-decoration: none;
|
159 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
|
160 |
+
transition: all 0.2s ease;
|
161 |
+
}
|
162 |
+
|
163 |
+
.resource-link:hover {
|
164 |
+
transform: translateY(-2px);
|
165 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15);
|
166 |
+
}
|
167 |
+
|
168 |
+
.label-container {
|
169 |
+
border-radius: var(--border-radius);
|
170 |
+
overflow: hidden;
|
171 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.05);
|
172 |
+
}
|
173 |
+
"""
|
174 |
+
|
175 |
# Create Gradio interface
|
176 |
+
with gr.Blocks(css=css) as demo:
|
177 |
# Title, Subtitle, and Logo
|
178 |
gr.HTML(
|
179 |
"""
|
180 |
+
<div class="header-container">
|
181 |
+
<div class="logo-container">
|
182 |
+
<img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg"
|
183 |
+
style="max-width: 180px; border-radius: 15px; box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
|
184 |
+
</div>
|
185 |
+
<h1 class="gradient-text">π΅ SONICS: Synthetic Or Not - Identifying Counterfeit Songs π€</h1>
|
186 |
<h3>ICLR 2025 [Poster]</h3>
|
187 |
+
<p style="font-size: 1.1em; color: #64748b; margin: 15px 0;">
|
188 |
+
Detect if a song is real or AI-generated with our state-of-the-art models.
|
189 |
+
Simply upload an audio file to verify its authenticity!
|
190 |
</p>
|
191 |
</div>
|
192 |
"""
|
193 |
)
|
194 |
+
|
195 |
+
# Resource Links
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
gr.HTML(
|
197 |
"""
|
198 |
+
<div class="resource-links">
|
199 |
+
<a href="https://openreview.net/forum?id=PY7KSh29Z8" target="_blank" class="resource-link">
|
200 |
+
π Paper
|
201 |
+
</a>
|
202 |
+
<a href="https://huggingface.co/datasets/awsaf49/sonics" target="_blank" class="resource-link">
|
203 |
+
π΅ Dataset
|
204 |
+
</a>
|
205 |
+
<a href="https://huggingface.co/collections/awsaf49/sonics-spectttra-67bb6517b3920fd18e409013" target="_blank" class="resource-link">
|
206 |
+
π€ Models
|
207 |
+
</a>
|
208 |
+
<a href="https://arxiv.org/abs/2408.14080" target="_blank" class="resource-link">
|
209 |
+
π¬ ArXiv
|
210 |
+
</a>
|
211 |
+
<a href="https://github.com/awsaf49/sonics" target="_blank" class="resource-link">
|
212 |
+
π» GitHub
|
213 |
+
</a>
|
214 |
</div>
|
215 |
"""
|
216 |
)
|
217 |
+
|
218 |
# Main Interface
|
219 |
+
with gr.Row(equal_height=True):
|
220 |
with gr.Column():
|
221 |
audio_input = gr.Audio(
|
222 |
+
label="π§ Upload Audio File",
|
223 |
+
type="filepath",
|
224 |
+
elem_id="audio_input"
|
225 |
)
|
226 |
+
|
227 |
model_dropdown = gr.Dropdown(
|
228 |
choices=list(MODEL_IDS.keys()),
|
229 |
value="SpecTTTra-Ξ³ (5s)",
|
230 |
+
label="π Select Model",
|
231 |
+
elem_id="model_dropdown"
|
232 |
)
|
233 |
+
|
234 |
+
submit_btn = gr.Button(
|
235 |
+
"β¨ Analyze Audio",
|
236 |
+
elem_id="submit_btn"
|
237 |
+
)
|
238 |
+
|
239 |
with gr.Column():
|
240 |
+
# Define output before using it in Examples
|
241 |
output = gr.Label(
|
242 |
+
label="π Analysis Result",
|
243 |
+
num_top_classes=2,
|
244 |
+
elem_id="output",
|
245 |
+
elem_classes="label-container"
|
246 |
)
|
247 |
+
|
248 |
+
with gr.Accordion("βΉοΈ How It Works", open=False):
|
249 |
+
gr.Markdown("""
|
250 |
+
The SONICS classifier analyzes your audio to determine if it's an authentic song (Human created) or
|
251 |
+
generated by AI. Our models are trained on a diverse dataset of real and AI-generated songs from Suno and Udio.
|
252 |
+
|
253 |
+
**Models available:**
|
254 |
+
- **SpecTTTra-Ξ³**: Optimized for speed
|
255 |
+
- **SpecTTTra-Ξ²**: Balanced performance
|
256 |
+
- **SpecTTTra-Ξ±**: Highest accuracy
|
257 |
+
|
258 |
+
**Duration variants:**
|
259 |
+
- **5s**: Analyzes a 5-second clip (faster)
|
260 |
+
- **120s**: Analyzes up to 2 minutes (more accurate)
|
261 |
+
""")
|
262 |
+
|
263 |
+
# Add Examples section after output is defined
|
264 |
+
with gr.Accordion("π¬ Example Audio Files", open=True):
|
265 |
+
gr.Examples(
|
266 |
+
examples=[
|
267 |
+
["example/real_song.mp3", "SpecTTTra-Ξ³ (5s)"],
|
268 |
+
["example/fake_song.mp3", "SpecTTTra-Ξ³ (5s)"],
|
269 |
+
],
|
270 |
+
inputs=[audio_input, model_dropdown],
|
271 |
+
outputs=[output],
|
272 |
+
fn=predict,
|
273 |
+
cache_examples=True,
|
274 |
+
)
|
275 |
+
|
276 |
+
# Footer
|
277 |
+
gr.HTML(
|
278 |
+
"""
|
279 |
+
<div class="footer">
|
280 |
+
<p>SONICS: Synthetic Or Not - Identifying Counterfeit Songs | Created by SONICS Team</p>
|
281 |
+
<p>Β© 2025 - For research purposes only</p>
|
282 |
+
</div>
|
283 |
+
"""
|
284 |
)
|
285 |
|
286 |
+
# Prediction handling
|
287 |
+
submit_btn.click(fn=predict, inputs=[audio_input, model_dropdown], outputs=[output])
|
288 |
+
|
289 |
if __name__ == "__main__":
|
290 |
demo.launch()
|
example/fake_song.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ba0ad7b7a7104a29ddf18c3ba3e04fb5045cdc1eb530f62fa611a08228eb30e
|
3 |
+
size 4410477
|
example/real_song.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c54d0a4d79601bdc739970ed8c22b6f5199527b79592146ebecf180e94f37529
|
3 |
+
size 1922782
|