import torch import torch.nn as nn class SinusoidPositionalEncoding(nn.Module): def __init__(self, token_dim, max_len=5000): super(SinusoidPositionalEncoding, self).__init__() pe = torch.zeros(max_len, token_dim) # shape: (max_len, token_dim) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze( 1 ) # shape: (max_len, 1) div_term = torch.exp( torch.arange(0, token_dim, 2).float() * (-torch.log(torch.tensor(10000.0)) / token_dim) ) # shape: (token_dim // 2) pe[:, 0::2] = torch.sin(position * div_term) # shape: (max_len, token_dim // 2) pe[:, 1::2] = torch.cos(position * div_term) # shape: (max_len, token_dim // 2) pe = pe.unsqueeze(0) # shape: (1, max_len, token_dim) self.register_buffer("pe", pe) def forward(self, x): x = x + self.pe[:, : x.size(1), :] # shape: (batch_size, seq_len, token_dim) return x class LearnedPositionalEncoding(nn.Module): def __init__(self, token_dim, num_tokens): super(LearnedPositionalEncoding, self).__init__() self.pe = nn.Parameter(torch.randn(1, num_tokens, token_dim) * 0.02) def forward(self, x): x = x + self.pe return x