import torch.nn as nn from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.jit import Final from timm.layers import ( Mlp, DropPath, use_fused_attn, ) class Attention(nn.Module): fused_attn: Final[bool] def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_norm: bool = False, attn_drop: float = 0.0, proj_drop: float = 0.0, norm_layer: nn.Module = nn.LayerNorm, ) -> None: super().__init__() assert dim % num_heads == 0, "dim should be divisible by num_heads" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim**-0.5 self.fused_attn = use_fused_attn() self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x: torch.Tensor) -> torch.Tensor: B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, self.head_dim) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) if self.fused_attn: x = F.scaled_dot_product_attention( q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0, ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class LayerScale(nn.Module): def __init__( self, dim: int, init_values: float = 1e-5, inplace: bool = False, ) -> None: super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x: torch.Tensor) -> torch.Tensor: return x.mul_(self.gamma) if self.inplace else x * self.gamma class TransformerBlock(nn.Module): def __init__( self, dim: int, num_heads: int, mlp_ratio: float = 4.0, qkv_bias: bool = False, qk_norm: bool = False, proj_drop: float = 0.0, attn_drop: float = 0.0, init_values: Optional[float] = None, drop_path: float = 0.0, act_layer: nn.Module = nn.GELU, norm_layer: nn.Module = nn.LayerNorm, mlp_layer: nn.Module = Mlp, ) -> None: super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, attn_drop=attn_drop, proj_drop=proj_drop, norm_layer=norm_layer, ) self.ls1 = ( LayerScale(dim, init_values=init_values) if init_values else nn.Identity() ) self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = mlp_layer( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, ) self.ls2 = ( LayerScale(dim, init_values=init_values) if init_values else nn.Identity() ) self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class Transformer(nn.Module): """ Transformer layer, taken from timm library """ def __init__( self, embed_dim: int, num_heads: int, num_layers: int, mlp_ratio: float = 4.0, qkv_bias: bool = False, qk_norm: bool = False, proj_drop: float = 0.0, attn_drop: float = 0.0, drop_path: float = 0.0, ): super(Transformer, self).__init__() self.blocks = nn.ModuleList( [ TransformerBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_norm=qk_norm, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path, ) for _ in range(num_layers) ] ) def forward(self, x): for block in self.blocks: x = block(x) return x