Spaces:
Runtime error
Runtime error
Commit
Β·
b144145
1
Parent(s):
e9c4b9d
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import whisper
|
3 |
+
import streamlit as st
|
4 |
+
from pydub import AudioSegment
|
5 |
+
|
6 |
+
st.set_page_config(
|
7 |
+
page_title="Whisper based ASR",
|
8 |
+
page_icon="musical_note",
|
9 |
+
layout="wide",
|
10 |
+
initial_sidebar_state="auto",
|
11 |
+
)
|
12 |
+
|
13 |
+
audio_tags = {'comments': 'Converted using pydub!'}
|
14 |
+
|
15 |
+
upload_path = "uploads/"
|
16 |
+
download_path = "downloads/"
|
17 |
+
transcript_path = "transcripts/"
|
18 |
+
|
19 |
+
@st.cache(persist=True,allow_output_mutation=False,show_spinner=True,suppress_st_warning=True)
|
20 |
+
def to_mp3(audio_file, output_audio_file, upload_path, download_path):
|
21 |
+
## Converting Different Audio Formats To MP3 ##
|
22 |
+
if audio_file.name.split('.')[-1].lower()=="wav":
|
23 |
+
audio_data = AudioSegment.from_wav(os.path.join(upload_path,audio_file.name))
|
24 |
+
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
|
25 |
+
|
26 |
+
elif audio_file.name.split('.')[-1].lower()=="mp3":
|
27 |
+
audio_data = AudioSegment.from_mp3(os.path.join(upload_path,audio_file.name))
|
28 |
+
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
|
29 |
+
|
30 |
+
elif audio_file.name.split('.')[-1].lower()=="ogg":
|
31 |
+
audio_data = AudioSegment.from_ogg(os.path.join(upload_path,audio_file.name))
|
32 |
+
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
|
33 |
+
|
34 |
+
elif audio_file.name.split('.')[-1].lower()=="wma":
|
35 |
+
audio_data = AudioSegment.from_file(os.path.join(upload_path,audio_file.name),"wma")
|
36 |
+
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
|
37 |
+
|
38 |
+
elif audio_file.name.split('.')[-1].lower()=="aac":
|
39 |
+
audio_data = AudioSegment.from_file(os.path.join(upload_path,audio_file.name),"aac")
|
40 |
+
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
|
41 |
+
|
42 |
+
elif audio_file.name.split('.')[-1].lower()=="flac":
|
43 |
+
audio_data = AudioSegment.from_file(os.path.join(upload_path,audio_file.name),"flac")
|
44 |
+
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
|
45 |
+
|
46 |
+
elif audio_file.name.split('.')[-1].lower()=="flv":
|
47 |
+
audio_data = AudioSegment.from_flv(os.path.join(upload_path,audio_file.name))
|
48 |
+
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
|
49 |
+
|
50 |
+
elif audio_file.name.split('.')[-1].lower()=="mp4":
|
51 |
+
audio_data = AudioSegment.from_file(os.path.join(upload_path,audio_file.name),"mp4")
|
52 |
+
audio_data.export(os.path.join(download_path,output_audio_file), format="mp3", tags=audio_tags)
|
53 |
+
return output_audio_file
|
54 |
+
|
55 |
+
@st.cache(persist=True,allow_output_mutation=False,show_spinner=True,suppress_st_warning=True)
|
56 |
+
def process_audio(filename, model_type):
|
57 |
+
model = whisper.load_model(model_type)
|
58 |
+
result = model.transcribe(filename)
|
59 |
+
return result["text"]
|
60 |
+
|
61 |
+
@st.cache(persist=True,allow_output_mutation=False,show_spinner=True,suppress_st_warning=True)
|
62 |
+
def save_transcript(transcript_data, txt_file):
|
63 |
+
with open(os.path.join(transcript_path, txt_file),"w") as f:
|
64 |
+
f.write(transcript_data)
|
65 |
+
|
66 |
+
st.title("π£ Automatic Speech Recognition using whisper by OpenAI β¨")
|
67 |
+
st.info('β¨ Supports all popular audio formats - WAV, MP3, MP4, OGG, WMA, AAC, FLAC, FLV π')
|
68 |
+
uploaded_file = st.file_uploader("Upload audio file", type=["wav","mp3","ogg","wma","aac","flac","mp4","flv"])
|
69 |
+
|
70 |
+
audio_file = None
|
71 |
+
|
72 |
+
if uploaded_file is not None:
|
73 |
+
audio_bytes = uploaded_file.read()
|
74 |
+
with open(os.path.join(upload_path,uploaded_file.name),"wb") as f:
|
75 |
+
f.write((uploaded_file).getbuffer())
|
76 |
+
with st.spinner(f"Processing Audio ... π«"):
|
77 |
+
output_audio_file = uploaded_file.name.split('.')[0] + '.mp3'
|
78 |
+
output_audio_file = to_mp3(uploaded_file, output_audio_file, upload_path, download_path)
|
79 |
+
audio_file = open(os.path.join(download_path,output_audio_file), 'rb')
|
80 |
+
audio_bytes = audio_file.read()
|
81 |
+
print("Opening ",audio_file)
|
82 |
+
st.markdown("---")
|
83 |
+
col1, col2 = st.columns(2)
|
84 |
+
with col1:
|
85 |
+
st.markdown("Feel free to play your uploaded audio file πΌ")
|
86 |
+
st.audio(audio_bytes)
|
87 |
+
with col2:
|
88 |
+
whisper_model_type = st.radio("Please choose your model type", ('Tiny', 'Base', 'Small', 'Medium', 'Large'))
|
89 |
+
|
90 |
+
if st.button("Generate Transcript"):
|
91 |
+
with st.spinner(f"Generating Transcript... π«"):
|
92 |
+
transcript = process_audio(str(os.path.abspath(os.path.join(download_path,output_audio_file))), whisper_model_type.lower())
|
93 |
+
|
94 |
+
output_txt_file = str(output_audio_file.split('.')[0]+".txt")
|
95 |
+
|
96 |
+
save_transcript(transcript, output_txt_file)
|
97 |
+
output_file = open(os.path.join(transcript_path,output_txt_file),"r")
|
98 |
+
output_file_data = output_file.read()
|
99 |
+
|
100 |
+
if st.download_button(
|
101 |
+
label="Download Transcript π",
|
102 |
+
data=output_file_data,
|
103 |
+
file_name=output_txt_file,
|
104 |
+
mime='text/plain'
|
105 |
+
):
|
106 |
+
st.balloons()
|
107 |
+
st.success('β
Download Successful !!')
|
108 |
+
|
109 |
+
else:
|
110 |
+
st.warning('β Please upload your audio file π―')
|
111 |
+
|
112 |
+
st.markdown("<br><hr><center>Made with β€οΈ by <a href='mailto:[email protected]?subject=ASR Whisper WebApp!&body=Please specify the issue you are facing with the app.'><strong>Prateek Ralhan</strong></a> with the help of [whisper](https://github.com/openai/whisper) built by [OpenAI](https://github.com/openai) β¨</center><hr>", unsafe_allow_html=True)
|
113 |
+
|
114 |
+
|