File size: 22,372 Bytes
2822008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
babf34b
2822008
babf34b
2822008
 
 
 
 
 
 
 
 
 
 
 
babf34b
2822008
 
 
 
9870f94
babf34b
9870f94
2822008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
babf34b
2822008
 
 
babf34b
 
 
2822008
 
 
babf34b
 
2822008
 
 
 
babf34b
 
2822008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
babf34b
2822008
babf34b
2822008
 
7aff93b
 
 
 
 
 
babf34b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822008
babf34b
 
 
 
 
2822008
 
 
 
 
babf34b
2822008
 
 
 
babf34b
2822008
 
 
 
 
9870f94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
babf34b
9870f94
 
 
 
 
babf34b
1b8aad2
 
7aff93b
 
 
 
2822008
 
 
7aff93b
2822008
 
 
 
 
babf34b
2822008
 
 
 
 
 
 
 
babf34b
 
2822008
 
 
 
 
 
babf34b
2822008
 
 
 
 
 
babf34b
2822008
babf34b
2822008
9870f94
2822008
babf34b
2822008
babf34b
2822008
9870f94
2822008
9870f94
2822008
 
 
 
 
 
9870f94
2822008
 
9870f94
 
2822008
 
 
 
 
 
babf34b
2822008
 
 
 
9870f94
2822008
 
 
 
 
 
 
 
 
 
 
babf34b
2822008
 
 
 
 
 
 
 
 
 
 
 
 
 
babf34b
 
2822008
 
 
 
9870f94
babf34b
2822008
9870f94
 
2822008
 
9870f94
 
2822008
babf34b
 
2822008
 
 
babf34b
2822008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
babf34b
2822008
 
 
babf34b
2822008
 
7aff93b
 
babf34b
7aff93b
 
 
babf34b
7aff93b
 
 
2822008
 
 
 
7aff93b
 
2822008
 
 
babf34b
2822008
 
 
 
 
babf34b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aff93b
 
 
 
 
 
 
 
 
 
babf34b
 
7aff93b
 
 
 
 
 
 
 
babf34b
 
 
 
 
7aff93b
 
2822008
babf34b
 
570b4ea
babf34b
 
 
 
dc42aef
570b4ea
2822008
 
 
 
 
 
7aff93b
 
 
2822008
dc42aef
 
 
2822008
dc42aef
2822008
7aff93b
2822008
dc42aef
babf34b
 
 
 
dc42aef
2822008
 
babf34b
 
 
 
2822008
babf34b
7aff93b
babf34b
 
2822008
babf34b
 
7aff93b
2822008
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import os
import shutil
import json
import torch
import torchaudio
import numpy as np
import logging
import warnings
import subprocess
import math
import random
import time
from pathlib import Path
from tqdm import tqdm
from PIL import Image
from huggingface_hub import snapshot_download
from omegaconf import DictConfig
import hydra
from hydra.utils import to_absolute_path
from transformers import Wav2Vec2FeatureExtractor, AutoModel
import mir_eval
import pretty_midi as pm
import gradio as gr
from gradio import Markdown
from music21 import converter
import torchaudio.transforms as T
import matplotlib.pyplot as plt

# カスタムユーティリティのインポート
from utils import logger
from utils.btc_model import BTC_model
from utils.transformer_modules import *
from utils.transformer_modules import _gen_timing_signal, _gen_bias_mask
from utils.hparams import HParams
from utils.mir_eval_modules import (
    audio_file_to_features, idx2chord, idx2voca_chord,
    get_audio_paths, get_lab_paths
)
from utils.mert import FeatureExtractorMERT
from model.linear_mt_attn_ck import FeedforwardModelMTAttnCK

# 不要な警告・ログを抑制
warnings.filterwarnings("ignore")
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)

PITCH_CLASS = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
tonic_signatures = ["A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#"]
mode_signatures = ["major", "minor"]

pitch_num_dic = {
    'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
    'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}

minor_major_dic = {
    'D-':'C#', 'E-':'D#', 'G-':'F#', 'A-':'G#', 'B-':'A#'
}
minor_major_dic2 = {
    'Db':'C#', 'Eb':'D#', 'Gb':'F#', 'Ab':'G#', 'Bb':'A#'
}

shift_major_dic = {
    'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
    'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}

shift_minor_dic = {
    'A': 0, 'A#': 1, 'B': 2, 'C': 3, 'C#': 4, 'D': 5,  
    'D#': 6, 'E': 7, 'F': 8, 'F#': 9, 'G': 10, 'G#': 11, 
}

flat_to_sharp_mapping = {
    "Cb": "B", 
    "Db": "C#", 
    "Eb": "D#", 
    "Fb": "E", 
    "Gb": "F#", 
    "Ab": "G#", 
    "Bb": "A#"
}

segment_duration = 30
resample_rate = 24000
is_split = True

def normalize_chord(file_path, key, key_type='major'):
    with open(file_path, 'r') as f:
        lines = f.readlines()

    if key == "None":
        new_key = "C major"
        shift = 0
    else:
        if len(key) == 1:
            key = key[0].upper()
        else:
            key = key[0].upper() + key[1:]
        if key in minor_major_dic2:
            key = minor_major_dic2[key]
        shift = 0
        if key_type == "major":
            new_key = "C major"
            shift = shift_major_dic[key]
        else:
            new_key = "A minor"
            shift = shift_minor_dic[key]
    
    converted_lines = []
    for line in lines:
        if line.strip():
            parts = line.split()
            start_time = parts[0]
            end_time = parts[1]
            chord = parts[2]
            if chord == "N" or chord == "X":
                newchordnorm = chord
            elif ":" in chord:
                pitch = chord.split(":")[0]
                attr = chord.split(":")[1]
                pnum = pitch_num_dic[pitch]
                new_idx = (pnum - shift) % 12
                newchord = PITCH_CLASS[new_idx]
                newchordnorm = newchord + ":" + attr
            else:
                pitch = chord
                pnum = pitch_num_dic[pitch]
                new_idx = (pnum - shift) % 12
                newchord = PITCH_CLASS[new_idx]
                newchordnorm = newchord
            converted_lines.append(f"{start_time} {end_time} {newchordnorm}\n")
    return converted_lines

def sanitize_key_signature(key):
    return key.replace('-', 'b')

def resample_waveform(waveform, original_sample_rate, target_sample_rate):
    if original_sample_rate != target_sample_rate:
        resampler = T.Resample(original_sample_rate, target_sample_rate)
        return resampler(waveform), target_sample_rate
    return waveform, original_sample_rate

def split_audio(waveform, sample_rate):
    segment_samples = segment_duration * sample_rate
    total_samples = waveform.size(0)
    segments = []
    for start in range(0, total_samples, segment_samples):
        end = start + segment_samples
        if end <= total_samples:
            segments.append(waveform[start:end])
    if len(segments) == 0: 
        segments.append(waveform)
    return segments

def safe_remove_dir(directory):
    directory = Path(directory)
    if directory.exists():
        try:
            shutil.rmtree(directory)
        except Exception as e:
            print(f"ディレクトリ {directory} の削除中にエラーが発生しました: {e}")

# 追加:YouTube URL から音声をダウンロードする関数
def download_audio_from_youtube(url, output_dir="inference/input"):
    import yt_dlp
    os.makedirs(output_dir, exist_ok=True)
    ydl_opts = {
        'format': 'bestaudio/best',
        'outtmpl': os.path.join(output_dir, 'tmp.%(ext)s'),
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'mp3',
            'preferredquality': '192',
        }],
        'noplaylist': True,
        'quiet': True,
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        info = ydl.extract_info(url, download=True)
        title = info.get('title', '不明なタイトル')
    output_file = os.path.join(output_dir, 'tmp.mp3')
    return output_file, title

# Music2emo クラス(既存コード)
class Music2emo:
    def __init__(self,
                 name="amaai-lab/music2emo",
                 device="cuda:0",
                 cache_dir=None,
                 local_files_only=False):
        model_weights = "saved_models/J_all.ckpt"
        self.device = device
        self.feature_extractor = FeatureExtractorMERT(model_name='m-a-p/MERT-v1-95M', device=self.device, sr=resample_rate)
        self.model_weights = model_weights
        self.music2emo_model = FeedforwardModelMTAttnCK(
            input_size=768 * 2,
            output_size_classification=56,
            output_size_regression=2
        )
        checkpoint = torch.load(self.model_weights, map_location=self.device, weights_only=False)
        state_dict = {key.replace("model.", ""): value for key, value in checkpoint["state_dict"].items()}
        model_keys = set(self.music2emo_model.state_dict().keys())
        filtered_state_dict = {key: value for key, value in state_dict.items() if key in model_keys}
        self.music2emo_model.load_state_dict(filtered_state_dict)
        self.music2emo_model.to(self.device)
        self.music2emo_model.eval()
        self.config = HParams.load("./inference/data/run_config.yaml")
        self.config.feature['large_voca'] = True
        self.config.model['num_chords'] = 170
        model_file = './inference/data/btc_model_large_voca.pt'
        self.idx_to_voca = idx2voca_chord()
        self.btc_model = BTC_model(config=self.config.model).to(self.device)
        if os.path.isfile(model_file):
            checkpoint = torch.load(model_file, map_location=self.device)
            self.mean = checkpoint['mean']
            self.std = checkpoint['std']
            self.btc_model.load_state_dict(checkpoint['model'])
        self.tonic_to_idx = {tonic: idx for idx, tonic in enumerate(tonic_signatures)}
        self.mode_to_idx = {mode: idx for idx, mode in enumerate(mode_signatures)}
        self.idx_to_tonic = {idx: tonic for tonic, idx in self.tonic_to_idx.items()}
        self.idx_to_mode = {idx: mode for mode, idx in self.mode_to_idx.items()}
        with open('inference/data/chord.json', 'r') as f:
            self.chord_to_idx = json.load(f)
        with open('inference/data/chord_inv.json', 'r') as f:
            self.idx_to_chord = {int(k): v for k, v in json.load(f).items()}
        with open('inference/data/chord_root.json') as json_file:
            self.chordRootDic = json.load(json_file)
        with open('inference/data/chord_attr.json') as json_file:
            self.chordAttrDic = json.load(json_file)

    def predict(self, audio, threshold=0.5):
        feature_dir = Path("./inference/temp_out")
        output_dir = Path("./inference/output")
        safe_remove_dir(feature_dir)
        safe_remove_dir(output_dir)
        feature_dir.mkdir(parents=True, exist_ok=True)
        output_dir.mkdir(parents=True, exist_ok=True)
        warnings.filterwarnings('ignore')
        logger.logging_verbosity(1)
        mert_dir = feature_dir / "mert"
        mert_dir.mkdir(parents=True, exist_ok=True)
        waveform, sample_rate = torchaudio.load(audio)
        if waveform.shape[0] > 1:
            waveform = waveform.mean(dim=0).unsqueeze(0)
        waveform = waveform.squeeze()
        waveform, sample_rate = resample_waveform(waveform, sample_rate, resample_rate)
        if is_split:
            segments = split_audio(waveform, sample_rate)
            for i, segment in enumerate(segments):
                segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
                self.feature_extractor.extract_features_from_segment(segment, sample_rate, segment_save_path)
        else:
            segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
            self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)
        segment_embeddings = []
        layers_to_extract = [5,6]
        for filename in sorted(os.listdir(mert_dir)):
            file_path = os.path.join(mert_dir, filename)
            if os.path.isfile(file_path) and filename.endswith('.npy'):
                segment = np.load(file_path)
                concatenated_features = np.concatenate(
                    [segment[:, layer_idx, :] for layer_idx in layers_to_extract], axis=1
                )
                concatenated_features = np.squeeze(concatenated_features)
                segment_embeddings.append(concatenated_features)
        segment_embeddings = np.array(segment_embeddings)
        if len(segment_embeddings) > 0:
            final_embedding_mert = np.mean(segment_embeddings, axis=0)
        else:
            final_embedding_mert = np.zeros((1536,))
        final_embedding_mert = torch.from_numpy(final_embedding_mert).to(self.device)
        audio_path = audio
        audio_id = os.path.split(audio_path)[-1][:-4]
        try:
            feature, feature_per_second, song_length_second = audio_file_to_features(audio_path, self.config)
        except:
            logger.info("音声ファイルの読み込みに失敗しました : %s" % audio_path)
            assert(False)
        logger.info("音声ファイルの読み込みと特徴量計算に成功しました : %s" % audio_path)
        feature = feature.T
        feature = (feature - self.mean) / self.std
        time_unit = feature_per_second
        n_timestep = self.config.model['timestep']
        num_pad = n_timestep - (feature.shape[0] % n_timestep)
        feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0)
        num_instance = feature.shape[0] // n_timestep
        start_time = 0.0
        lines = []
        with torch.no_grad():
            self.btc_model.eval()
            feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(self.device)
            for t in range(num_instance):
                self_attn_output, _ = self.btc_model.self_attn_layers(feature[:, n_timestep * t:n_timestep * (t + 1), :])
                prediction, _ = self.btc_model.output_layer(self_attn_output)
                prediction = prediction.squeeze()
                for i in range(n_timestep):
                    if t == 0 and i == 0:
                        prev_chord = prediction[i].item()
                        continue
                    if prediction[i].item() != prev_chord:
                        lines.append('%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), self.idx_to_voca[prev_chord]))
                        start_time = time_unit * (n_timestep * t + i)
                        prev_chord = prediction[i].item()
                    if t == num_instance - 1 and i + num_pad == n_timestep:
                        if start_time != time_unit * (n_timestep * t + i):
                            lines.append('%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), self.idx_to_voca[prev_chord]))
                        break
        save_path = os.path.join(feature_dir, os.path.split(audio_path)[-1].replace('.mp3', '').replace('.wav', '') + '.lab')
        with open(save_path, 'w') as f:
            for line in lines:
                f.write(line)
        try:
            midi_file = converter.parse(save_path.replace('.lab', '.midi'))
            key_signature = str(midi_file.analyze('key'))
        except Exception as e:
            key_signature = "None"
        key_parts = key_signature.split()
        key_signature = sanitize_key_signature(key_parts[0])
        key_type = key_parts[1] if len(key_parts) > 1 else 'major'
        converted_lines = normalize_chord(save_path, key_signature, key_type)
        lab_norm_path = save_path[:-4] + "_norm.lab"
        with open(lab_norm_path, 'w') as f:
            f.writelines(converted_lines)
        chords = []
        if not os.path.exists(lab_norm_path):
            chords.append((float(0), float(0), "N"))
        else:
            with open(lab_norm_path, 'r') as file:
                for line in file:
                    start, end, chord = line.strip().split()
                    chords.append((float(start), float(end), chord))
        encoded = []
        encoded_root = []
        encoded_attr = []
        durations = []
        for start, end, chord in chords:
            chord_arr = chord.split(":")
            if len(chord_arr) == 1:
                chordRootID = self.chordRootDic[chord_arr[0]]
                chordAttrID = 0 if chord_arr[0] in ["N", "X"] else 1
            elif len(chord_arr) == 2:
                chordRootID = self.chordRootDic[chord_arr[0]]
                chordAttrID = self.chordAttrDic[chord_arr[1]]
            encoded_root.append(chordRootID)
            encoded_attr.append(chordAttrID)
            if chord in self.chord_to_idx:
                encoded.append(self.chord_to_idx[chord])
            else:
                print(f"警告: {chord} は chord.json に見つかりませんでした。スキップします。")
            durations.append(end - start)
        encoded_chords = np.array(encoded)
        encoded_chords_root = np.array(encoded_root)
        encoded_chords_attr = np.array(encoded_attr)
        max_sequence_length = 100
        if len(encoded_chords) > max_sequence_length:
            encoded_chords = encoded_chords[:max_sequence_length]
            encoded_chords_root = encoded_chords_root[:max_sequence_length]
            encoded_chords_attr = encoded_chords_attr[:max_sequence_length]
        else:
            padding = [0] * (max_sequence_length - len(encoded_chords))
            encoded_chords = np.concatenate([encoded_chords, padding])
            encoded_chords_root = np.concatenate([encoded_chords_root, padding])
            encoded_chords_attr = np.concatenate([encoded_chords_attr, padding])
        chords_tensor = torch.tensor(encoded_chords, dtype=torch.long).to(self.device)
        chords_root_tensor = torch.tensor(encoded_chords_root, dtype=torch.long).to(self.device)
        chords_attr_tensor = torch.tensor(encoded_chords_attr, dtype=torch.long).to(self.device)
        model_input_dic = {
            "x_mert": final_embedding_mert.unsqueeze(0),
            "x_chord": chords_tensor.unsqueeze(0),
            "x_chord_root": chords_root_tensor.unsqueeze(0),
            "x_chord_attr": chords_attr_tensor.unsqueeze(0),
            "x_key": torch.tensor([self.mode_to_idx.get(key_type, 0)], dtype=torch.long).unsqueeze(0).to(self.device)
        }
        model_input_dic = {k: v.to(self.device) for k, v in model_input_dic.items()}
        classification_output, regression_output = self.music2emo_model(model_input_dic)
        tag_list = np.load("./inference/data/tag_list.npy")
        tag_list = tag_list[127:]
        mood_list = [t.replace("mood/theme---", "") for t in tag_list]
        probs = torch.sigmoid(classification_output).squeeze().tolist()
        predicted_moods_with_scores = [
            {"mood": mood_list[i], "score": round(p, 4)}
            for i, p in enumerate(probs) if p > threshold
        ]
        predicted_moods_with_scores_all = [
            {"mood": mood_list[i], "score": round(p, 4)}
            for i, p in enumerate(probs)
        ]
        predicted_moods_with_scores.sort(key=lambda x: x["score"], reverse=True)
        valence, arousal = regression_output.squeeze().tolist()
        model_output_dic = {
            "valence": valence,
            "arousal": arousal,
            "predicted_moods": predicted_moods_with_scores,
            "predicted_moods_all": predicted_moods_with_scores_all
        }
        return model_output_dic

# Music2Emo モデルの初期化
if torch.cuda.is_available():
    music2emo = Music2emo()
else:
    music2emo = Music2emo(device="cpu")

# 入力(音声ファイルまたはYouTube URL)を処理する関数
def process_input(audio, youtube_url, threshold):
    if youtube_url and youtube_url.strip().startswith("http"):
        # YouTube URL が入力されている場合、音声をダウンロード
        audio_file, video_title = download_audio_from_youtube(youtube_url)
        output_dic = music2emo.predict(audio_file, threshold)
        output_text, va_chart, mood_chart = format_prediction(output_dic)
        output_text += f"\n動画タイトル: {video_title}"
        return output_text, va_chart, mood_chart
    elif audio:
        output_dic = music2emo.predict(audio, threshold)
        return format_prediction(output_dic)
    else:
        return "音声ファイルまたは YouTube URL を入力してください。", None, None

# 解析結果のフォーマット関数
def format_prediction(model_output_dic):
    valence = model_output_dic["valence"]
    arousal = model_output_dic["arousal"]
    predicted_moods_with_scores = model_output_dic["predicted_moods"]
    predicted_moods_with_scores_all = model_output_dic["predicted_moods_all"]
    va_chart = plot_valence_arousal(valence, arousal)
    mood_chart = plot_mood_probabilities(predicted_moods_with_scores_all)
    if predicted_moods_with_scores:
        moods_text = ", ".join([f"{m['mood']} ({m['score']:.2f})" for m in predicted_moods_with_scores])
    else:
        moods_text = "顕著なムードは検出されませんでした。"
    output_text = f"""🎭 ムードタグ: {moods_text}

💖 バレンス: {valence:.2f} (1〜9 スケール)  
⚡ アラウザル: {arousal:.2f} (1〜9 スケール)"""
    return output_text, va_chart, mood_chart

def plot_mood_probabilities(predicted_moods_with_scores):
    if not predicted_moods_with_scores:
        return None
    moods = [m["mood"] for m in predicted_moods_with_scores]
    probs = [m["score"] for m in predicted_moods_with_scores]
    sorted_indices = np.argsort(probs)[::-1]
    sorted_probs = [probs[i] for i in sorted_indices]
    sorted_moods = [moods[i] for i in sorted_indices]
    fig, ax = plt.subplots(figsize=(8, 4))
    ax.barh(sorted_moods[:10], sorted_probs[:10], color="#4CAF50")
    ax.set_xlabel("確率")
    ax.set_title("上位10のムードタグ")
    ax.invert_yaxis()
    return fig

def plot_valence_arousal(valence, arousal):
    fig, ax = plt.subplots(figsize=(4, 4))
    ax.scatter(valence, arousal, color="red", s=100)
    ax.set_xlim(1, 9)
    ax.set_ylim(1, 9)
    ax.axhline(y=5, color='gray', linestyle='--', linewidth=1)
    ax.axvline(x=5, color='gray', linestyle='--', linewidth=1)
    ax.set_xlabel("バレンス (ポジティブ度)")
    ax.set_ylabel("アラウザル (活発度)")
    ax.set_title("バレンス・アラウザル プロット")
    ax.grid(True, linestyle="--", alpha=0.6)
    return fig

# Gradio UI の設定
title = "🎵 Music2Emo:統一型音楽感情認識システム"
description_text = """
<p>
音声ファイルまたは YouTube の URL を入力すると、Music2Emo が楽曲の感情的特徴を解析します。<br/><br/>
このデモでは、1) ムードタグ、2) バレンス(1〜9 スケール)、3) アラウザル(1〜9 スケール)を予測します。<br/><br/>
詳細は <a href="https://arxiv.org/abs/2502.03979" target="_blank">論文</a> をご参照ください。
</p>
"""
css = """
.gradio-container {
    font-family: 'Inter', -apple-system, system-ui, sans-serif;
}
.gr-button {
    color: white;
    background: #4CAF50;
    border-radius: 8px;
    padding: 10px;
}
.gr-box {
    padding-top: 25px !important;
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML(f"<h1 style='text-align: center;'>{title}</h1>")
    gr.Markdown(description_text)
    gr.Markdown("""
    ### 📝 注意事項:
    - **対応音声フォーマット:** MP3, WAV  
    - **YouTube URL も入力可能です(任意)  
    - **推奨:** 高品質な音声ファイル  
    """)
    with gr.Row():
        with gr.Column(scale=1):
            input_audio = gr.Audio(label="音声ファイルをアップロード", type="filepath")
            youtube_url = gr.Textbox(label="YouTube URL (任意)", placeholder="例: https://youtu.be/XXXXXXX")
            threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.01, label="ムード検出のしきい値", info="しきい値を調整してください")
            predict_btn = gr.Button("🎭 感情解析を実行", variant="primary")
        with gr.Column(scale=1):
            output_text = gr.Textbox(label="解析結果", lines=4, interactive=False)
            with gr.Row(equal_height=True):
                mood_chart = gr.Plot(label="ムード確率", scale=2, elem_classes=["gr-box"])
                va_chart = gr.Plot(label="バレンス・アラウザル", scale=1, elem_classes=["gr-box"])
    predict_btn.click(
        fn=process_input,
        inputs=[input_audio, youtube_url, threshold],
        outputs=[output_text, va_chart, mood_chart]
    )

demo.queue().launch()