File size: 22,372 Bytes
2822008 babf34b 2822008 babf34b 2822008 babf34b 2822008 9870f94 babf34b 9870f94 2822008 babf34b 2822008 babf34b 2822008 babf34b 2822008 babf34b 2822008 babf34b 2822008 babf34b 2822008 7aff93b babf34b 2822008 babf34b 2822008 babf34b 2822008 babf34b 2822008 9870f94 babf34b 9870f94 babf34b 1b8aad2 7aff93b 2822008 7aff93b 2822008 babf34b 2822008 babf34b 2822008 babf34b 2822008 babf34b 2822008 babf34b 2822008 9870f94 2822008 babf34b 2822008 babf34b 2822008 9870f94 2822008 9870f94 2822008 9870f94 2822008 9870f94 2822008 babf34b 2822008 9870f94 2822008 babf34b 2822008 babf34b 2822008 9870f94 babf34b 2822008 9870f94 2822008 9870f94 2822008 babf34b 2822008 babf34b 2822008 babf34b 2822008 babf34b 2822008 7aff93b babf34b 7aff93b babf34b 7aff93b 2822008 7aff93b 2822008 babf34b 2822008 babf34b 7aff93b babf34b 7aff93b babf34b 7aff93b 2822008 babf34b 570b4ea babf34b dc42aef 570b4ea 2822008 7aff93b 2822008 dc42aef 2822008 dc42aef 2822008 7aff93b 2822008 dc42aef babf34b dc42aef 2822008 babf34b 2822008 babf34b 7aff93b babf34b 2822008 babf34b 7aff93b 2822008 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import os
import shutil
import json
import torch
import torchaudio
import numpy as np
import logging
import warnings
import subprocess
import math
import random
import time
from pathlib import Path
from tqdm import tqdm
from PIL import Image
from huggingface_hub import snapshot_download
from omegaconf import DictConfig
import hydra
from hydra.utils import to_absolute_path
from transformers import Wav2Vec2FeatureExtractor, AutoModel
import mir_eval
import pretty_midi as pm
import gradio as gr
from gradio import Markdown
from music21 import converter
import torchaudio.transforms as T
import matplotlib.pyplot as plt
# カスタムユーティリティのインポート
from utils import logger
from utils.btc_model import BTC_model
from utils.transformer_modules import *
from utils.transformer_modules import _gen_timing_signal, _gen_bias_mask
from utils.hparams import HParams
from utils.mir_eval_modules import (
audio_file_to_features, idx2chord, idx2voca_chord,
get_audio_paths, get_lab_paths
)
from utils.mert import FeatureExtractorMERT
from model.linear_mt_attn_ck import FeedforwardModelMTAttnCK
# 不要な警告・ログを抑制
warnings.filterwarnings("ignore")
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
PITCH_CLASS = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B']
tonic_signatures = ["A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#"]
mode_signatures = ["major", "minor"]
pitch_num_dic = {
'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}
minor_major_dic = {
'D-':'C#', 'E-':'D#', 'G-':'F#', 'A-':'G#', 'B-':'A#'
}
minor_major_dic2 = {
'Db':'C#', 'Eb':'D#', 'Gb':'F#', 'Ab':'G#', 'Bb':'A#'
}
shift_major_dic = {
'C': 0, 'C#': 1, 'D': 2, 'D#': 3, 'E': 4, 'F': 5,
'F#': 6, 'G': 7, 'G#': 8, 'A': 9, 'A#': 10, 'B': 11
}
shift_minor_dic = {
'A': 0, 'A#': 1, 'B': 2, 'C': 3, 'C#': 4, 'D': 5,
'D#': 6, 'E': 7, 'F': 8, 'F#': 9, 'G': 10, 'G#': 11,
}
flat_to_sharp_mapping = {
"Cb": "B",
"Db": "C#",
"Eb": "D#",
"Fb": "E",
"Gb": "F#",
"Ab": "G#",
"Bb": "A#"
}
segment_duration = 30
resample_rate = 24000
is_split = True
def normalize_chord(file_path, key, key_type='major'):
with open(file_path, 'r') as f:
lines = f.readlines()
if key == "None":
new_key = "C major"
shift = 0
else:
if len(key) == 1:
key = key[0].upper()
else:
key = key[0].upper() + key[1:]
if key in minor_major_dic2:
key = minor_major_dic2[key]
shift = 0
if key_type == "major":
new_key = "C major"
shift = shift_major_dic[key]
else:
new_key = "A minor"
shift = shift_minor_dic[key]
converted_lines = []
for line in lines:
if line.strip():
parts = line.split()
start_time = parts[0]
end_time = parts[1]
chord = parts[2]
if chord == "N" or chord == "X":
newchordnorm = chord
elif ":" in chord:
pitch = chord.split(":")[0]
attr = chord.split(":")[1]
pnum = pitch_num_dic[pitch]
new_idx = (pnum - shift) % 12
newchord = PITCH_CLASS[new_idx]
newchordnorm = newchord + ":" + attr
else:
pitch = chord
pnum = pitch_num_dic[pitch]
new_idx = (pnum - shift) % 12
newchord = PITCH_CLASS[new_idx]
newchordnorm = newchord
converted_lines.append(f"{start_time} {end_time} {newchordnorm}\n")
return converted_lines
def sanitize_key_signature(key):
return key.replace('-', 'b')
def resample_waveform(waveform, original_sample_rate, target_sample_rate):
if original_sample_rate != target_sample_rate:
resampler = T.Resample(original_sample_rate, target_sample_rate)
return resampler(waveform), target_sample_rate
return waveform, original_sample_rate
def split_audio(waveform, sample_rate):
segment_samples = segment_duration * sample_rate
total_samples = waveform.size(0)
segments = []
for start in range(0, total_samples, segment_samples):
end = start + segment_samples
if end <= total_samples:
segments.append(waveform[start:end])
if len(segments) == 0:
segments.append(waveform)
return segments
def safe_remove_dir(directory):
directory = Path(directory)
if directory.exists():
try:
shutil.rmtree(directory)
except Exception as e:
print(f"ディレクトリ {directory} の削除中にエラーが発生しました: {e}")
# 追加:YouTube URL から音声をダウンロードする関数
def download_audio_from_youtube(url, output_dir="inference/input"):
import yt_dlp
os.makedirs(output_dir, exist_ok=True)
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': os.path.join(output_dir, 'tmp.%(ext)s'),
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'noplaylist': True,
'quiet': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
title = info.get('title', '不明なタイトル')
output_file = os.path.join(output_dir, 'tmp.mp3')
return output_file, title
# Music2emo クラス(既存コード)
class Music2emo:
def __init__(self,
name="amaai-lab/music2emo",
device="cuda:0",
cache_dir=None,
local_files_only=False):
model_weights = "saved_models/J_all.ckpt"
self.device = device
self.feature_extractor = FeatureExtractorMERT(model_name='m-a-p/MERT-v1-95M', device=self.device, sr=resample_rate)
self.model_weights = model_weights
self.music2emo_model = FeedforwardModelMTAttnCK(
input_size=768 * 2,
output_size_classification=56,
output_size_regression=2
)
checkpoint = torch.load(self.model_weights, map_location=self.device, weights_only=False)
state_dict = {key.replace("model.", ""): value for key, value in checkpoint["state_dict"].items()}
model_keys = set(self.music2emo_model.state_dict().keys())
filtered_state_dict = {key: value for key, value in state_dict.items() if key in model_keys}
self.music2emo_model.load_state_dict(filtered_state_dict)
self.music2emo_model.to(self.device)
self.music2emo_model.eval()
self.config = HParams.load("./inference/data/run_config.yaml")
self.config.feature['large_voca'] = True
self.config.model['num_chords'] = 170
model_file = './inference/data/btc_model_large_voca.pt'
self.idx_to_voca = idx2voca_chord()
self.btc_model = BTC_model(config=self.config.model).to(self.device)
if os.path.isfile(model_file):
checkpoint = torch.load(model_file, map_location=self.device)
self.mean = checkpoint['mean']
self.std = checkpoint['std']
self.btc_model.load_state_dict(checkpoint['model'])
self.tonic_to_idx = {tonic: idx for idx, tonic in enumerate(tonic_signatures)}
self.mode_to_idx = {mode: idx for idx, mode in enumerate(mode_signatures)}
self.idx_to_tonic = {idx: tonic for tonic, idx in self.tonic_to_idx.items()}
self.idx_to_mode = {idx: mode for mode, idx in self.mode_to_idx.items()}
with open('inference/data/chord.json', 'r') as f:
self.chord_to_idx = json.load(f)
with open('inference/data/chord_inv.json', 'r') as f:
self.idx_to_chord = {int(k): v for k, v in json.load(f).items()}
with open('inference/data/chord_root.json') as json_file:
self.chordRootDic = json.load(json_file)
with open('inference/data/chord_attr.json') as json_file:
self.chordAttrDic = json.load(json_file)
def predict(self, audio, threshold=0.5):
feature_dir = Path("./inference/temp_out")
output_dir = Path("./inference/output")
safe_remove_dir(feature_dir)
safe_remove_dir(output_dir)
feature_dir.mkdir(parents=True, exist_ok=True)
output_dir.mkdir(parents=True, exist_ok=True)
warnings.filterwarnings('ignore')
logger.logging_verbosity(1)
mert_dir = feature_dir / "mert"
mert_dir.mkdir(parents=True, exist_ok=True)
waveform, sample_rate = torchaudio.load(audio)
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0).unsqueeze(0)
waveform = waveform.squeeze()
waveform, sample_rate = resample_waveform(waveform, sample_rate, resample_rate)
if is_split:
segments = split_audio(waveform, sample_rate)
for i, segment in enumerate(segments):
segment_save_path = os.path.join(mert_dir, f"segment_{i}.npy")
self.feature_extractor.extract_features_from_segment(segment, sample_rate, segment_save_path)
else:
segment_save_path = os.path.join(mert_dir, f"segment_0.npy")
self.feature_extractor.extract_features_from_segment(waveform, sample_rate, segment_save_path)
segment_embeddings = []
layers_to_extract = [5,6]
for filename in sorted(os.listdir(mert_dir)):
file_path = os.path.join(mert_dir, filename)
if os.path.isfile(file_path) and filename.endswith('.npy'):
segment = np.load(file_path)
concatenated_features = np.concatenate(
[segment[:, layer_idx, :] for layer_idx in layers_to_extract], axis=1
)
concatenated_features = np.squeeze(concatenated_features)
segment_embeddings.append(concatenated_features)
segment_embeddings = np.array(segment_embeddings)
if len(segment_embeddings) > 0:
final_embedding_mert = np.mean(segment_embeddings, axis=0)
else:
final_embedding_mert = np.zeros((1536,))
final_embedding_mert = torch.from_numpy(final_embedding_mert).to(self.device)
audio_path = audio
audio_id = os.path.split(audio_path)[-1][:-4]
try:
feature, feature_per_second, song_length_second = audio_file_to_features(audio_path, self.config)
except:
logger.info("音声ファイルの読み込みに失敗しました : %s" % audio_path)
assert(False)
logger.info("音声ファイルの読み込みと特徴量計算に成功しました : %s" % audio_path)
feature = feature.T
feature = (feature - self.mean) / self.std
time_unit = feature_per_second
n_timestep = self.config.model['timestep']
num_pad = n_timestep - (feature.shape[0] % n_timestep)
feature = np.pad(feature, ((0, num_pad), (0, 0)), mode="constant", constant_values=0)
num_instance = feature.shape[0] // n_timestep
start_time = 0.0
lines = []
with torch.no_grad():
self.btc_model.eval()
feature = torch.tensor(feature, dtype=torch.float32).unsqueeze(0).to(self.device)
for t in range(num_instance):
self_attn_output, _ = self.btc_model.self_attn_layers(feature[:, n_timestep * t:n_timestep * (t + 1), :])
prediction, _ = self.btc_model.output_layer(self_attn_output)
prediction = prediction.squeeze()
for i in range(n_timestep):
if t == 0 and i == 0:
prev_chord = prediction[i].item()
continue
if prediction[i].item() != prev_chord:
lines.append('%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), self.idx_to_voca[prev_chord]))
start_time = time_unit * (n_timestep * t + i)
prev_chord = prediction[i].item()
if t == num_instance - 1 and i + num_pad == n_timestep:
if start_time != time_unit * (n_timestep * t + i):
lines.append('%.3f %.3f %s\n' % (start_time, time_unit * (n_timestep * t + i), self.idx_to_voca[prev_chord]))
break
save_path = os.path.join(feature_dir, os.path.split(audio_path)[-1].replace('.mp3', '').replace('.wav', '') + '.lab')
with open(save_path, 'w') as f:
for line in lines:
f.write(line)
try:
midi_file = converter.parse(save_path.replace('.lab', '.midi'))
key_signature = str(midi_file.analyze('key'))
except Exception as e:
key_signature = "None"
key_parts = key_signature.split()
key_signature = sanitize_key_signature(key_parts[0])
key_type = key_parts[1] if len(key_parts) > 1 else 'major'
converted_lines = normalize_chord(save_path, key_signature, key_type)
lab_norm_path = save_path[:-4] + "_norm.lab"
with open(lab_norm_path, 'w') as f:
f.writelines(converted_lines)
chords = []
if not os.path.exists(lab_norm_path):
chords.append((float(0), float(0), "N"))
else:
with open(lab_norm_path, 'r') as file:
for line in file:
start, end, chord = line.strip().split()
chords.append((float(start), float(end), chord))
encoded = []
encoded_root = []
encoded_attr = []
durations = []
for start, end, chord in chords:
chord_arr = chord.split(":")
if len(chord_arr) == 1:
chordRootID = self.chordRootDic[chord_arr[0]]
chordAttrID = 0 if chord_arr[0] in ["N", "X"] else 1
elif len(chord_arr) == 2:
chordRootID = self.chordRootDic[chord_arr[0]]
chordAttrID = self.chordAttrDic[chord_arr[1]]
encoded_root.append(chordRootID)
encoded_attr.append(chordAttrID)
if chord in self.chord_to_idx:
encoded.append(self.chord_to_idx[chord])
else:
print(f"警告: {chord} は chord.json に見つかりませんでした。スキップします。")
durations.append(end - start)
encoded_chords = np.array(encoded)
encoded_chords_root = np.array(encoded_root)
encoded_chords_attr = np.array(encoded_attr)
max_sequence_length = 100
if len(encoded_chords) > max_sequence_length:
encoded_chords = encoded_chords[:max_sequence_length]
encoded_chords_root = encoded_chords_root[:max_sequence_length]
encoded_chords_attr = encoded_chords_attr[:max_sequence_length]
else:
padding = [0] * (max_sequence_length - len(encoded_chords))
encoded_chords = np.concatenate([encoded_chords, padding])
encoded_chords_root = np.concatenate([encoded_chords_root, padding])
encoded_chords_attr = np.concatenate([encoded_chords_attr, padding])
chords_tensor = torch.tensor(encoded_chords, dtype=torch.long).to(self.device)
chords_root_tensor = torch.tensor(encoded_chords_root, dtype=torch.long).to(self.device)
chords_attr_tensor = torch.tensor(encoded_chords_attr, dtype=torch.long).to(self.device)
model_input_dic = {
"x_mert": final_embedding_mert.unsqueeze(0),
"x_chord": chords_tensor.unsqueeze(0),
"x_chord_root": chords_root_tensor.unsqueeze(0),
"x_chord_attr": chords_attr_tensor.unsqueeze(0),
"x_key": torch.tensor([self.mode_to_idx.get(key_type, 0)], dtype=torch.long).unsqueeze(0).to(self.device)
}
model_input_dic = {k: v.to(self.device) for k, v in model_input_dic.items()}
classification_output, regression_output = self.music2emo_model(model_input_dic)
tag_list = np.load("./inference/data/tag_list.npy")
tag_list = tag_list[127:]
mood_list = [t.replace("mood/theme---", "") for t in tag_list]
probs = torch.sigmoid(classification_output).squeeze().tolist()
predicted_moods_with_scores = [
{"mood": mood_list[i], "score": round(p, 4)}
for i, p in enumerate(probs) if p > threshold
]
predicted_moods_with_scores_all = [
{"mood": mood_list[i], "score": round(p, 4)}
for i, p in enumerate(probs)
]
predicted_moods_with_scores.sort(key=lambda x: x["score"], reverse=True)
valence, arousal = regression_output.squeeze().tolist()
model_output_dic = {
"valence": valence,
"arousal": arousal,
"predicted_moods": predicted_moods_with_scores,
"predicted_moods_all": predicted_moods_with_scores_all
}
return model_output_dic
# Music2Emo モデルの初期化
if torch.cuda.is_available():
music2emo = Music2emo()
else:
music2emo = Music2emo(device="cpu")
# 入力(音声ファイルまたはYouTube URL)を処理する関数
def process_input(audio, youtube_url, threshold):
if youtube_url and youtube_url.strip().startswith("http"):
# YouTube URL が入力されている場合、音声をダウンロード
audio_file, video_title = download_audio_from_youtube(youtube_url)
output_dic = music2emo.predict(audio_file, threshold)
output_text, va_chart, mood_chart = format_prediction(output_dic)
output_text += f"\n動画タイトル: {video_title}"
return output_text, va_chart, mood_chart
elif audio:
output_dic = music2emo.predict(audio, threshold)
return format_prediction(output_dic)
else:
return "音声ファイルまたは YouTube URL を入力してください。", None, None
# 解析結果のフォーマット関数
def format_prediction(model_output_dic):
valence = model_output_dic["valence"]
arousal = model_output_dic["arousal"]
predicted_moods_with_scores = model_output_dic["predicted_moods"]
predicted_moods_with_scores_all = model_output_dic["predicted_moods_all"]
va_chart = plot_valence_arousal(valence, arousal)
mood_chart = plot_mood_probabilities(predicted_moods_with_scores_all)
if predicted_moods_with_scores:
moods_text = ", ".join([f"{m['mood']} ({m['score']:.2f})" for m in predicted_moods_with_scores])
else:
moods_text = "顕著なムードは検出されませんでした。"
output_text = f"""🎭 ムードタグ: {moods_text}
💖 バレンス: {valence:.2f} (1〜9 スケール)
⚡ アラウザル: {arousal:.2f} (1〜9 スケール)"""
return output_text, va_chart, mood_chart
def plot_mood_probabilities(predicted_moods_with_scores):
if not predicted_moods_with_scores:
return None
moods = [m["mood"] for m in predicted_moods_with_scores]
probs = [m["score"] for m in predicted_moods_with_scores]
sorted_indices = np.argsort(probs)[::-1]
sorted_probs = [probs[i] for i in sorted_indices]
sorted_moods = [moods[i] for i in sorted_indices]
fig, ax = plt.subplots(figsize=(8, 4))
ax.barh(sorted_moods[:10], sorted_probs[:10], color="#4CAF50")
ax.set_xlabel("確率")
ax.set_title("上位10のムードタグ")
ax.invert_yaxis()
return fig
def plot_valence_arousal(valence, arousal):
fig, ax = plt.subplots(figsize=(4, 4))
ax.scatter(valence, arousal, color="red", s=100)
ax.set_xlim(1, 9)
ax.set_ylim(1, 9)
ax.axhline(y=5, color='gray', linestyle='--', linewidth=1)
ax.axvline(x=5, color='gray', linestyle='--', linewidth=1)
ax.set_xlabel("バレンス (ポジティブ度)")
ax.set_ylabel("アラウザル (活発度)")
ax.set_title("バレンス・アラウザル プロット")
ax.grid(True, linestyle="--", alpha=0.6)
return fig
# Gradio UI の設定
title = "🎵 Music2Emo:統一型音楽感情認識システム"
description_text = """
<p>
音声ファイルまたは YouTube の URL を入力すると、Music2Emo が楽曲の感情的特徴を解析します。<br/><br/>
このデモでは、1) ムードタグ、2) バレンス(1〜9 スケール)、3) アラウザル(1〜9 スケール)を予測します。<br/><br/>
詳細は <a href="https://arxiv.org/abs/2502.03979" target="_blank">論文</a> をご参照ください。
</p>
"""
css = """
.gradio-container {
font-family: 'Inter', -apple-system, system-ui, sans-serif;
}
.gr-button {
color: white;
background: #4CAF50;
border-radius: 8px;
padding: 10px;
}
.gr-box {
padding-top: 25px !important;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(f"<h1 style='text-align: center;'>{title}</h1>")
gr.Markdown(description_text)
gr.Markdown("""
### 📝 注意事項:
- **対応音声フォーマット:** MP3, WAV
- **YouTube URL も入力可能です(任意)
- **推奨:** 高品質な音声ファイル
""")
with gr.Row():
with gr.Column(scale=1):
input_audio = gr.Audio(label="音声ファイルをアップロード", type="filepath")
youtube_url = gr.Textbox(label="YouTube URL (任意)", placeholder="例: https://youtu.be/XXXXXXX")
threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.01, label="ムード検出のしきい値", info="しきい値を調整してください")
predict_btn = gr.Button("🎭 感情解析を実行", variant="primary")
with gr.Column(scale=1):
output_text = gr.Textbox(label="解析結果", lines=4, interactive=False)
with gr.Row(equal_height=True):
mood_chart = gr.Plot(label="ムード確率", scale=2, elem_classes=["gr-box"])
va_chart = gr.Plot(label="バレンス・アラウザル", scale=1, elem_classes=["gr-box"])
predict_btn.click(
fn=process_input,
inputs=[input_audio, youtube_url, threshold],
outputs=[output_text, va_chart, mood_chart]
)
demo.queue().launch()
|