defaults: | |
- base_config | |
- _self_ | |
devices: [0,1,2,3] | |
epochs: 500 | |
batch_size: 8 | |
monitor_metric: "val_loss" | |
monitor_metric_mood: "val_loss_mood" | |
monitor_metric_va: "val_loss_va" | |
checkpoint: | |
monitor: "${monitor_metric}" | |
filename: "{epoch:02d}-{${monitor_metric}:.4f}" | |
save_top_k: -1 | |
mode: "min" | |
auto_insert_metric_name: False | |
save_last: True | |
checkpoint_mood: | |
monitor: "${monitor_metric_mood}" | |
filename: "mood-{epoch:02d}-{${monitor_metric_mood}:.4f}" | |
save_top_k: -1 | |
mode: "min" | |
auto_insert_metric_name: False | |
save_last: True | |
checkpoint_va: | |
monitor: "${monitor_metric_va}" | |
filename: "va-{epoch:02d}-{${monitor_metric_va}:.4f}" | |
save_top_k: 5 | |
mode: "min" | |
auto_insert_metric_name: False | |
save_last: True | |
earlystopping: | |
monitor: "${monitor_metric_mood}" | |
patience: 10 | |
min_delta: 0.0001 | |
mode: "min" | |
trainer: | |
devices: ${devices} | |
max_epochs: ${epochs} | |
accelerator: 'gpu' | |
# strategy: 'ddp_find_unused_parameters_true' | |
# optimizer: | |
# _target_: torch.optim.AdamW | |
# _partial_: true | |
# lr: 1e-4 | |
# weight_decay: 0.01 | |
# scheduler: | |
# _target_: torch.optim.lr_scheduler.ReduceLROnPlateau | |
# _partial_: true | |
# cooldown: 5 | |
# mode: max | |
# factor: 0.2 | |
# patience: 10 | |
# min_lr: 1.6e-7 | |
# monitor_metric: "val_loss" | |
# # val_loss | |
# # val_loss_mood | |
# # val_loss_va | |
# checkpoint: | |
# monitor: "${monitor_metric}" | |
# filename: "{epoch:02d}-{${monitor_metric}:.4f}" | |
# save_top_k: 2 | |
# mode: "min" | |
# auto_insert_metric_name: False | |
# save_last: True | |
# checkpoint: | |
# monitor: "val_loss_mood" | |
# filename: "{epoch:02d}-{val_loss_mood:.4f}" | |
# save_top_k: 2 | |
# mode: "min" | |
# auto_insert_metric_name: False | |
# save_last: True | |
# earlystopping: | |
# monitor: 'val_loss_mood' | |
# patience: 10 | |
# min_delta: 0.0001 | |
# mode: "min" | |
# datasets: | |
# - jamendo | |
# - dmdd | |