kjysmu's picture
Upload 22 files
6ad6801 verified
raw
history blame
7.36 kB
from utils.transformer_modules import *
from utils.transformer_modules import _gen_timing_signal, _gen_bias_mask
from utils.hparams import HParams
use_cuda = torch.cuda.is_available()
class self_attention_block(nn.Module):
def __init__(self, hidden_size, total_key_depth, total_value_depth, filter_size, num_heads,
bias_mask=None, layer_dropout=0.0, attention_dropout=0.0, relu_dropout=0.0, attention_map=False):
super(self_attention_block, self).__init__()
self.attention_map = attention_map
self.multi_head_attention = MultiHeadAttention(hidden_size, total_key_depth, total_value_depth,hidden_size, num_heads, bias_mask, attention_dropout, attention_map)
self.positionwise_convolution = PositionwiseFeedForward(hidden_size, filter_size, hidden_size, layer_config='cc', padding='both', dropout=relu_dropout)
self.dropout = nn.Dropout(layer_dropout)
self.layer_norm_mha = LayerNorm(hidden_size)
self.layer_norm_ffn = LayerNorm(hidden_size)
def forward(self, inputs):
x = inputs
# Layer Normalization
x_norm = self.layer_norm_mha(x)
# Multi-head attention
if self.attention_map is True:
y, weights = self.multi_head_attention(x_norm, x_norm, x_norm)
else:
y = self.multi_head_attention(x_norm, x_norm, x_norm)
# Dropout and residual
x = self.dropout(x + y)
# Layer Normalization
x_norm = self.layer_norm_ffn(x)
# Positionwise Feedforward
y = self.positionwise_convolution(x_norm)
# Dropout and residual
y = self.dropout(x + y)
if self.attention_map is True:
return y, weights
return y
class bi_directional_self_attention(nn.Module):
def __init__(self, hidden_size, total_key_depth, total_value_depth, filter_size, num_heads, max_length,
layer_dropout=0.0, attention_dropout=0.0, relu_dropout=0.0):
super(bi_directional_self_attention, self).__init__()
self.weights_list = list()
params = (hidden_size,
total_key_depth or hidden_size,
total_value_depth or hidden_size,
filter_size,
num_heads,
_gen_bias_mask(max_length),
layer_dropout,
attention_dropout,
relu_dropout,
True)
self.attn_block = self_attention_block(*params)
params = (hidden_size,
total_key_depth or hidden_size,
total_value_depth or hidden_size,
filter_size,
num_heads,
torch.transpose(_gen_bias_mask(max_length), dim0=2, dim1=3),
layer_dropout,
attention_dropout,
relu_dropout,
True)
self.backward_attn_block = self_attention_block(*params)
self.linear = nn.Linear(hidden_size*2, hidden_size)
def forward(self, inputs):
x, list = inputs
# Forward Self-attention Block
encoder_outputs, weights = self.attn_block(x)
# Backward Self-attention Block
reverse_outputs, reverse_weights = self.backward_attn_block(x)
# Concatenation and Fully-connected Layer
outputs = torch.cat((encoder_outputs, reverse_outputs), dim=2)
y = self.linear(outputs)
# Attention weights for Visualization
self.weights_list = list
self.weights_list.append(weights)
self.weights_list.append(reverse_weights)
return y, self.weights_list
class bi_directional_self_attention_layers(nn.Module):
def __init__(self, embedding_size, hidden_size, num_layers, num_heads, total_key_depth, total_value_depth,
filter_size, max_length=100, input_dropout=0.0, layer_dropout=0.0,
attention_dropout=0.0, relu_dropout=0.0):
super(bi_directional_self_attention_layers, self).__init__()
self.timing_signal = _gen_timing_signal(max_length, hidden_size)
params = (hidden_size,
total_key_depth or hidden_size,
total_value_depth or hidden_size,
filter_size,
num_heads,
max_length,
layer_dropout,
attention_dropout,
relu_dropout)
self.embedding_proj = nn.Linear(embedding_size, hidden_size, bias=False)
self.self_attn_layers = nn.Sequential(*[bi_directional_self_attention(*params) for l in range(num_layers)])
self.layer_norm = LayerNorm(hidden_size)
self.input_dropout = nn.Dropout(input_dropout)
def forward(self, inputs):
# Add input dropout
x = self.input_dropout(inputs)
# Project to hidden size
x = self.embedding_proj(x)
# Add timing signal
x += self.timing_signal[:, :inputs.shape[1], :].type_as(inputs.data)
# A Stack of Bi-directional Self-attention Layers
y, weights_list = self.self_attn_layers((x, []))
# Layer Normalization
y = self.layer_norm(y)
return y, weights_list
class BTC_model(nn.Module):
def __init__(self, config):
super(BTC_model, self).__init__()
self.timestep = config['timestep']
self.probs_out = config['probs_out']
params = (config['feature_size'],
config['hidden_size'],
config['num_layers'],
config['num_heads'],
config['total_key_depth'],
config['total_value_depth'],
config['filter_size'],
config['timestep'],
config['input_dropout'],
config['layer_dropout'],
config['attention_dropout'],
config['relu_dropout'])
self.self_attn_layers = bi_directional_self_attention_layers(*params)
self.output_layer = SoftmaxOutputLayer(hidden_size=config['hidden_size'], output_size=config['num_chords'], probs_out=config['probs_out'])
def forward(self, x, labels):
labels = labels.view(-1, self.timestep)
# Output of Bi-directional Self-attention Layers
self_attn_output, weights_list = self.self_attn_layers(x)
# return logit values for CRF
if self.probs_out is True:
logits = self.output_layer(self_attn_output)
return logits
# Output layer and Soft-max
prediction,second = self.output_layer(self_attn_output)
prediction = prediction.view(-1)
second = second.view(-1)
# Loss Calculation
loss = self.output_layer.loss(self_attn_output, labels)
return prediction, loss, weights_list, second
if __name__ == "__main__":
config = HParams.load("run_config.yaml")
device = torch.device("cuda" if use_cuda else "cpu")
batch_size = 2
timestep = 108
feature_size = 144
num_chords = 25
features = torch.randn(batch_size,timestep,feature_size,requires_grad=True).to(device)
chords = torch.randint(25,(batch_size*timestep,)).to(device)
model = BTC_model(config=config.model).to(device)
prediction, loss, weights_list, second = model(features, chords)
print(prediction.size())
print(loss)