Upload 14 files
Browse files- model/__init__.py +3 -0
- model/__pycache__/__init__.cpython-310.pyc +0 -0
- model/__pycache__/crnn.cpython-310.pyc +0 -0
- model/__pycache__/linear.cpython-310.pyc +0 -0
- model/__pycache__/linear_mt.cpython-310.pyc +0 -0
- model/__pycache__/linear_mt_multitask.cpython-310.pyc +0 -0
- model/__pycache__/linear_multitask.cpython-310.pyc +0 -0
- model/__pycache__/linear_small.cpython-310.pyc +0 -0
- model/__pycache__/linear_small_multitask.cpython-310.pyc +0 -0
- model/__pycache__/transformer.cpython-310.pyc +0 -0
- model/__pycache__/transformer_multitask.cpython-310.pyc +0 -0
- model/linear.py +39 -0
- model/linear_attn_ck.py +92 -0
- model/linear_mt_attn_ck.py +100 -0
model/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"Import all submodules"
|
2 |
+
|
3 |
+
# from model import
|
model/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (171 Bytes). View file
|
|
model/__pycache__/crnn.cpython-310.pyc
ADDED
Binary file (2.01 kB). View file
|
|
model/__pycache__/linear.cpython-310.pyc
ADDED
Binary file (1.17 kB). View file
|
|
model/__pycache__/linear_mt.cpython-310.pyc
ADDED
Binary file (989 Bytes). View file
|
|
model/__pycache__/linear_mt_multitask.cpython-310.pyc
ADDED
Binary file (1.27 kB). View file
|
|
model/__pycache__/linear_multitask.cpython-310.pyc
ADDED
Binary file (1.41 kB). View file
|
|
model/__pycache__/linear_small.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
model/__pycache__/linear_small_multitask.cpython-310.pyc
ADDED
Binary file (1.34 kB). View file
|
|
model/__pycache__/transformer.cpython-310.pyc
ADDED
Binary file (1.62 kB). View file
|
|
model/__pycache__/transformer_multitask.cpython-310.pyc
ADDED
Binary file (2.07 kB). View file
|
|
model/linear.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import pytorch_lightning as pl
|
5 |
+
from sklearn import metrics
|
6 |
+
from transformers import AutoModelForAudioClassification
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
class FeedforwardModel(nn.Module):
|
10 |
+
def __init__(self, input_size, output_size):
|
11 |
+
super(FeedforwardModel, self).__init__()
|
12 |
+
self.model = nn.Sequential(
|
13 |
+
nn.Linear(input_size, 1024),
|
14 |
+
nn.BatchNorm1d(1024),
|
15 |
+
nn.ReLU(),
|
16 |
+
nn.Dropout(0.3),
|
17 |
+
|
18 |
+
nn.Linear(1024, 512),
|
19 |
+
nn.BatchNorm1d(512),
|
20 |
+
nn.ReLU(),
|
21 |
+
nn.Dropout(0.3),
|
22 |
+
|
23 |
+
nn.Linear(512, 256),
|
24 |
+
nn.BatchNorm1d(256),
|
25 |
+
nn.ReLU(),
|
26 |
+
nn.Dropout(0.3),
|
27 |
+
|
28 |
+
nn.Linear(256, 128),
|
29 |
+
nn.BatchNorm1d(128),
|
30 |
+
nn.ReLU(),
|
31 |
+
nn.Dropout(0.3),
|
32 |
+
|
33 |
+
nn.Linear(128, output_size),
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
logit = self.model(x)
|
38 |
+
return logit
|
39 |
+
|
model/linear_attn_ck.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import pytorch_lightning as pl
|
5 |
+
from sklearn import metrics
|
6 |
+
from transformers import AutoModelForAudioClassification
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
class PositionalEncoding(nn.Module):
|
10 |
+
def __init__(self, d_model, max_len=100):
|
11 |
+
super().__init__()
|
12 |
+
self.encoding = torch.zeros(max_len, d_model)
|
13 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
14 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
|
15 |
+
self.encoding[:, 0::2] = torch.sin(position * div_term)
|
16 |
+
self.encoding[:, 1::2] = torch.cos(position * div_term)
|
17 |
+
self.encoding = self.encoding.unsqueeze(0) # Shape: (1, max_len, d_model)
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
seq_len = x.size(1)
|
21 |
+
return x + self.encoding[:, :seq_len, :].to(x.device)
|
22 |
+
|
23 |
+
class FeedforwardModelAttnCK(nn.Module):
|
24 |
+
def __init__(self, input_size, output_size, nhead=8, num_layers=1, dropout_rate=0.1,
|
25 |
+
num_key = 2, num_chords=158, num_chords_root=14, num_chords_attr=14,
|
26 |
+
key_emb_dim=4, chord_emb_dim=8, chord_root_emb_dim=4, chord_attr_emb_dim=4):
|
27 |
+
super().__init__()
|
28 |
+
self.d_model = 512
|
29 |
+
|
30 |
+
self.d_model_transformer = chord_root_emb_dim + chord_attr_emb_dim
|
31 |
+
|
32 |
+
# Embedding layers for chords and keys
|
33 |
+
self.chord_root_embedding = nn.Embedding(num_chords_root, chord_root_emb_dim)
|
34 |
+
self.chord_attr_embedding = nn.Embedding(num_chords_attr, chord_attr_emb_dim)
|
35 |
+
|
36 |
+
nn.init.xavier_uniform_(self.chord_root_embedding.weight)
|
37 |
+
nn.init.xavier_uniform_(self.chord_attr_embedding.weight)
|
38 |
+
|
39 |
+
# Positional encoding for chord progression
|
40 |
+
self.positional_encoding = PositionalEncoding(self.d_model_transformer)
|
41 |
+
|
42 |
+
# Transformer for chord progression modeling
|
43 |
+
self.chord_transformer = nn.TransformerEncoder(
|
44 |
+
nn.TransformerEncoderLayer(d_model=self.d_model_transformer, nhead=nhead, dim_feedforward= 64, dropout=0.1, batch_first=True),
|
45 |
+
num_layers=2
|
46 |
+
)
|
47 |
+
# Input projection for latent features
|
48 |
+
self.input_proj = nn.Sequential(
|
49 |
+
nn.Linear(input_size + self.d_model_transformer + 1, self.d_model),
|
50 |
+
nn.ReLU(),
|
51 |
+
)
|
52 |
+
|
53 |
+
# Output projection
|
54 |
+
self.output_proj = nn.Sequential(
|
55 |
+
nn.Linear(self.d_model, 256),
|
56 |
+
nn.ReLU(),
|
57 |
+
nn.Linear(256, output_size),
|
58 |
+
)
|
59 |
+
|
60 |
+
def forward(self, model_input_dic ):
|
61 |
+
x_mert = model_input_dic["x_mert"]
|
62 |
+
x_chord_root = model_input_dic["x_chord_root"]
|
63 |
+
x_chord_attr = model_input_dic["x_chord_attr"]
|
64 |
+
x_key = model_input_dic["x_key"]
|
65 |
+
|
66 |
+
key_embedding = x_key.float()
|
67 |
+
|
68 |
+
chord_root_embedding = self.chord_root_embedding(x_chord_root) # Shape: (batch_size, seq_len, chord_root_emb_dim)
|
69 |
+
chord_attr_embedding = self.chord_attr_embedding(x_chord_attr) # Shape: (batch_size, seq_len, chord_attr_emb_dim)
|
70 |
+
|
71 |
+
# Concatenate root and attribute embeddings
|
72 |
+
chord_combined_embedding = torch.cat(
|
73 |
+
(chord_root_embedding, chord_attr_embedding), dim=-1
|
74 |
+
) # Shape: (batch_size, seq_len, chord_root_emb_dim + chord_attr_emb_dim)
|
75 |
+
|
76 |
+
# Positional encoding and chord transformer
|
77 |
+
chord_combined_embedding = self.positional_encoding(chord_combined_embedding)
|
78 |
+
|
79 |
+
cls_token = torch.zeros_like(chord_combined_embedding[:, :1, :])
|
80 |
+
|
81 |
+
chord_embedding_with_cls = torch.cat([cls_token, chord_combined_embedding], dim=1) # Add CLS at the start
|
82 |
+
chord_embedding_transformed = self.chord_transformer(chord_embedding_with_cls) # Shape: (seq_len+1, batch_size, chord_emb_dim)
|
83 |
+
|
84 |
+
chord_embedding_cls = chord_embedding_transformed[:,0,:] # Shape: (batch_size, chord_emb_dim)
|
85 |
+
|
86 |
+
# Combine all features
|
87 |
+
combined_features = torch.cat((x_mert, chord_embedding_cls, key_embedding), dim=1)
|
88 |
+
# Input projection
|
89 |
+
combined_features = self.input_proj(combined_features) # Shape: (batch_size, d_model)
|
90 |
+
|
91 |
+
output = self.output_proj(combined_features) # Shape: (batch_size, output_size)
|
92 |
+
return output
|
model/linear_mt_attn_ck.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import pytorch_lightning as pl
|
5 |
+
from sklearn import metrics
|
6 |
+
from transformers import AutoModelForAudioClassification
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
class PositionalEncoding(nn.Module):
|
10 |
+
def __init__(self, d_model, max_len=100):
|
11 |
+
super().__init__()
|
12 |
+
self.encoding = torch.zeros(max_len, d_model)
|
13 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
14 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
|
15 |
+
self.encoding[:, 0::2] = torch.sin(position * div_term)
|
16 |
+
self.encoding[:, 1::2] = torch.cos(position * div_term)
|
17 |
+
self.encoding = self.encoding.unsqueeze(0) # Shape: (1, max_len, d_model)
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
seq_len = x.size(1)
|
21 |
+
return x + self.encoding[:, :seq_len, :].to(x.device)
|
22 |
+
|
23 |
+
class FeedforwardModelMTAttnCK(nn.Module):
|
24 |
+
def __init__(self, input_size, output_size_classification, output_size_regression, nhead=8, num_layers=1, dropout_rate=0.1,
|
25 |
+
num_key = 2, num_chords=158, num_chords_root=14, num_chords_attr=14,
|
26 |
+
key_emb_dim=4, chord_emb_dim=8, chord_root_emb_dim=4, chord_attr_emb_dim=4):
|
27 |
+
super().__init__()
|
28 |
+
self.d_model = 512
|
29 |
+
|
30 |
+
self.d_model_transformer = chord_root_emb_dim + chord_attr_emb_dim
|
31 |
+
|
32 |
+
# Embedding layers for chords and keys
|
33 |
+
self.chord_root_embedding = nn.Embedding(num_chords_root, chord_root_emb_dim)
|
34 |
+
self.chord_attr_embedding = nn.Embedding(num_chords_attr, chord_attr_emb_dim)
|
35 |
+
|
36 |
+
nn.init.xavier_uniform_(self.chord_root_embedding.weight)
|
37 |
+
nn.init.xavier_uniform_(self.chord_attr_embedding.weight)
|
38 |
+
|
39 |
+
# Positional encoding for chord progression
|
40 |
+
self.positional_encoding = PositionalEncoding(self.d_model_transformer)
|
41 |
+
|
42 |
+
# Transformer for chord progression modeling
|
43 |
+
self.chord_transformer = nn.TransformerEncoder(
|
44 |
+
nn.TransformerEncoderLayer(d_model=self.d_model_transformer, nhead=nhead, dim_feedforward= 64, dropout=0.1, batch_first=True),
|
45 |
+
num_layers=2
|
46 |
+
)
|
47 |
+
|
48 |
+
self.input_proj = nn.Sequential(
|
49 |
+
nn.Linear(input_size + self.d_model_transformer + 1, self.d_model),
|
50 |
+
nn.ReLU(),
|
51 |
+
)
|
52 |
+
|
53 |
+
# Classification branch (e.g., Jamendo - mood classification with 56 classes)
|
54 |
+
self.classification_branch = nn.Sequential(
|
55 |
+
nn.Linear(self.d_model, 256),
|
56 |
+
nn.ReLU(),
|
57 |
+
nn.Linear(256, output_size_classification) # Output: 56 classes
|
58 |
+
)
|
59 |
+
|
60 |
+
# Regression branch (e.g., DMDD - valence-arousal prediction, including std values)
|
61 |
+
self.regression_branch = nn.Sequential(
|
62 |
+
nn.Linear(self.d_model, 256),
|
63 |
+
nn.ReLU(),
|
64 |
+
nn.Linear(256, output_size_regression) # Output: [mean, std] for valence-arousal
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
def forward(self, model_input_dic ):
|
69 |
+
x_mert = model_input_dic["x_mert"]
|
70 |
+
x_chord_root = model_input_dic["x_chord_root"]
|
71 |
+
x_chord_attr = model_input_dic["x_chord_attr"]
|
72 |
+
|
73 |
+
x_key = model_input_dic["x_key"]
|
74 |
+
key_embedding = x_key.float()
|
75 |
+
|
76 |
+
chord_root_embedding = self.chord_root_embedding(x_chord_root) # Shape: (batch_size, seq_len, chord_root_emb_dim)
|
77 |
+
chord_attr_embedding = self.chord_attr_embedding(x_chord_attr) # Shape: (batch_size, seq_len, chord_attr_emb_dim)
|
78 |
+
|
79 |
+
# Concatenate root and attribute embeddings
|
80 |
+
chord_combined_embedding = torch.cat(
|
81 |
+
(chord_root_embedding, chord_attr_embedding), dim=-1
|
82 |
+
) # Shape: (batch_size, seq_len, chord_root_emb_dim + chord_attr_emb_dim)
|
83 |
+
|
84 |
+
chord_combined_embedding = self.positional_encoding(chord_combined_embedding)
|
85 |
+
cls_token = torch.zeros_like(chord_combined_embedding[:, :1, :])
|
86 |
+
|
87 |
+
chord_embedding_with_cls = torch.cat([cls_token, chord_combined_embedding], dim=1) # Add CLS at the start
|
88 |
+
chord_embedding_transformed = self.chord_transformer(chord_embedding_with_cls) # Shape: (seq_len+1, batch_size, chord_emb_dim)
|
89 |
+
|
90 |
+
chord_embedding_cls = chord_embedding_transformed[:,0,:] # Shape: (batch_size, chord_emb_dim)
|
91 |
+
|
92 |
+
# Combine all features
|
93 |
+
combined_features = torch.cat((x_mert, chord_embedding_cls, key_embedding), dim=1)
|
94 |
+
# Input projection
|
95 |
+
combined_features = self.input_proj(combined_features) # Shape: (batch_size, d_model)
|
96 |
+
|
97 |
+
classification_output = self.classification_branch(combined_features)
|
98 |
+
regression_output = self.regression_branch(combined_features)
|
99 |
+
|
100 |
+
return classification_output, regression_output
|