defaults: - base_config - _self_ devices: [0,1,2,3] epochs: 500 batch_size: 8 monitor_metric: "val_loss" monitor_metric_mood: "val_loss_mood" monitor_metric_va: "val_loss_va" checkpoint: monitor: "${monitor_metric}" filename: "{epoch:02d}-{${monitor_metric}:.4f}" save_top_k: -1 mode: "min" auto_insert_metric_name: False save_last: True checkpoint_mood: monitor: "${monitor_metric_mood}" filename: "mood-{epoch:02d}-{${monitor_metric_mood}:.4f}" save_top_k: -1 mode: "min" auto_insert_metric_name: False save_last: True checkpoint_va: monitor: "${monitor_metric_va}" filename: "va-{epoch:02d}-{${monitor_metric_va}:.4f}" save_top_k: 5 mode: "min" auto_insert_metric_name: False save_last: True earlystopping: monitor: "${monitor_metric_mood}" patience: 10 min_delta: 0.0001 mode: "min" trainer: devices: ${devices} max_epochs: ${epochs} accelerator: 'gpu' # strategy: 'ddp_find_unused_parameters_true' # optimizer: # _target_: torch.optim.AdamW # _partial_: true # lr: 1e-4 # weight_decay: 0.01 # scheduler: # _target_: torch.optim.lr_scheduler.ReduceLROnPlateau # _partial_: true # cooldown: 5 # mode: max # factor: 0.2 # patience: 10 # min_lr: 1.6e-7 # monitor_metric: "val_loss" # # val_loss # # val_loss_mood # # val_loss_va # checkpoint: # monitor: "${monitor_metric}" # filename: "{epoch:02d}-{${monitor_metric}:.4f}" # save_top_k: 2 # mode: "min" # auto_insert_metric_name: False # save_last: True # checkpoint: # monitor: "val_loss_mood" # filename: "{epoch:02d}-{val_loss_mood:.4f}" # save_top_k: 2 # mode: "min" # auto_insert_metric_name: False # save_last: True # earlystopping: # monitor: 'val_loss_mood' # patience: 10 # min_delta: 0.0001 # mode: "min" # datasets: # - jamendo # - dmdd