azizbarank commited on
Commit
688e382
·
1 Parent(s): 3924e7a

Create new file

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system("pip install torch")
3
+ os.system("pip install transformers")
4
+ os.system("pip install sentencepiece")
5
+
6
+ import streamlit as st
7
+ from transformers import pipeline
8
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
9
+
10
+ tokenizer = AutoTokenizer.from_pretrained("azizbarank/distilbert-base-turkish-cased-sentiment")
11
+ model = AutoModelForSequenceClassification.from_pretrained("azizbarank/distilbert-base-turkish-cased-sentiment")
12
+
13
+ def classify(text):
14
+ cls= pipeline("text-classification",model=model, tokenizer=tokenizer)
15
+ return cls(text)[0]['label']
16
+
17
+
18
+ site_header = st.container()
19
+ text_input = st.container()
20
+ model_results = st.container()
21
+
22
+ with site_header:
23
+ st.title('Turkish Sentiment Analysis 😀😠')
24
+ st.markdown(
25
+ """
26
+ [Distilled Turkish BERT model](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) that I fine-tuned on the [sepidmnorozy/Turkish_sentiment](https://huggingface.co/datasets/sepidmnorozy/Turkish_sentiment) dataset that is heavily based on different reviews about services/places.
27
+
28
+ For more information on the dataset:
29
+
30
+ * [Hugging Face](https://huggingface.co/datasets/sepidmnorozy/Turkish_sentiment)
31
+ """
32
+ )
33
+
34
+ with text_input:
35
+ st.header('Is Your Review Considered Positive or Negative?')
36
+ st.write("""*Please note that predictions are based on how the model was trained, so it may not be an accurate representation.*""")
37
+ user_text = st.text_input('Enter Text', max_chars=300)
38
+
39
+ with model_results:
40
+ st.subheader('Prediction:')
41
+ if user_text:
42
+ prediction = classify(user_text)
43
+
44
+ if prediction == "LABEL_0":
45
+ st.subheader('**Negative**')
46
+ else:
47
+ st.subheader('**Positive**')
48
+ st.text('')