Spaces:
Running
Running
azeus
commited on
Commit
·
1e2e376
1
Parent(s):
c00ec95
adding fb model
Browse files- app.py +116 -26
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,11 +1,78 @@
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Page setup
|
5 |
st.title("🎵 Music Genre Classifier")
|
6 |
-
st.write("Upload an audio file to analyze its genre")
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
col1, col2 = st.columns(2)
|
10 |
|
11 |
with col1:
|
@@ -17,38 +84,61 @@ with col1:
|
|
17 |
st.audio(audio_file)
|
18 |
st.success("File uploaded successfully!")
|
19 |
|
20 |
-
# Add
|
21 |
if st.button("Classify Genre"):
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
|
36 |
with col2:
|
37 |
-
# Display
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
st.write("### Tips for best results:")
|
39 |
-
st.write("- Upload
|
40 |
-
st.write("- Ensure good audio quality")
|
41 |
-
st.write("- Try to upload songs without too much background noise")
|
42 |
st.write("- Ideal length: 10-30 seconds")
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
|
52 |
# Footer
|
53 |
st.markdown("---")
|
54 |
-
st.write("Made with ❤️ using Streamlit")
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2Model
|
5 |
+
import torchaudio
|
6 |
+
import io
|
7 |
+
|
8 |
+
|
9 |
+
# Initialize model and processor
|
10 |
+
@st.cache_resource
|
11 |
+
def load_model():
|
12 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base")
|
13 |
+
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base")
|
14 |
+
return processor, model
|
15 |
+
|
16 |
+
|
17 |
+
# Audio processing function
|
18 |
+
def process_audio(audio_file, processor, model):
|
19 |
+
# Read audio file
|
20 |
+
audio_bytes = audio_file.read()
|
21 |
+
waveform, sample_rate = torchaudio.load(io.BytesIO(audio_bytes))
|
22 |
+
|
23 |
+
# Resample if needed
|
24 |
+
if sample_rate != 16000:
|
25 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
26 |
+
waveform = resampler(waveform)
|
27 |
+
|
28 |
+
# Convert to mono if stereo
|
29 |
+
if waveform.shape[0] > 1:
|
30 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
31 |
+
|
32 |
+
# Process through Wav2Vec2
|
33 |
+
inputs = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt", padding=True)
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = model(**inputs)
|
36 |
+
|
37 |
+
# Get features from last hidden states
|
38 |
+
features = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
39 |
+
return features
|
40 |
+
|
41 |
+
|
42 |
+
# Simple genre classifier (we'll use a basic classifier for demonstration)
|
43 |
+
class SimpleGenreClassifier:
|
44 |
+
def __init__(self):
|
45 |
+
self.genres = ["Rock", "Pop", "Hip Hop", "Classical", "Jazz"]
|
46 |
+
# Simulated learned weights (in real application, these would be trained)
|
47 |
+
self.weights = np.random.randn(768, len(self.genres))
|
48 |
+
|
49 |
+
def predict(self, features):
|
50 |
+
# Simple linear classification
|
51 |
+
logits = np.dot(features, self.weights)
|
52 |
+
probabilities = self.softmax(logits)
|
53 |
+
return probabilities
|
54 |
+
|
55 |
+
@staticmethod
|
56 |
+
def softmax(x):
|
57 |
+
exp_x = np.exp(x - np.max(x))
|
58 |
+
return exp_x / exp_x.sum()
|
59 |
+
|
60 |
|
61 |
# Page setup
|
62 |
st.title("🎵 Music Genre Classifier")
|
63 |
+
st.write("Upload an audio file to analyze its genre using Wav2Vec2")
|
64 |
|
65 |
+
# Load models
|
66 |
+
try:
|
67 |
+
with st.spinner("Loading models..."):
|
68 |
+
processor, wav2vec_model = load_model()
|
69 |
+
classifier = SimpleGenreClassifier()
|
70 |
+
st.success("Models loaded successfully!")
|
71 |
+
except Exception as e:
|
72 |
+
st.error(f"Error loading models: {str(e)}")
|
73 |
+
st.stop()
|
74 |
+
|
75 |
+
# Create two columns for layout
|
76 |
col1, col2 = st.columns(2)
|
77 |
|
78 |
with col1:
|
|
|
84 |
st.audio(audio_file)
|
85 |
st.success("File uploaded successfully!")
|
86 |
|
87 |
+
# Add classify button
|
88 |
if st.button("Classify Genre"):
|
89 |
+
try:
|
90 |
+
with st.spinner("Analyzing audio..."):
|
91 |
+
# Extract features using Wav2Vec2
|
92 |
+
features = process_audio(audio_file, processor, wav2vec_model)
|
93 |
+
|
94 |
+
# Get genre predictions
|
95 |
+
probabilities = classifier.predict(features)
|
96 |
|
97 |
+
# Show results
|
98 |
+
st.write("### Genre Analysis Results:")
|
99 |
+
for genre, prob in zip(classifier.genres, probabilities):
|
100 |
+
# Create a progress bar for each genre
|
101 |
+
st.write(f"{genre}:")
|
102 |
+
st.progress(float(prob))
|
103 |
+
st.write(f"{prob:.2%}")
|
104 |
|
105 |
+
# Show top prediction
|
106 |
+
top_genre = classifier.genres[np.argmax(probabilities)]
|
107 |
+
st.write(f"**Predicted Genre:** {top_genre}")
|
108 |
+
except Exception as e:
|
109 |
+
st.error(f"Error during analysis: {str(e)}")
|
110 |
|
111 |
with col2:
|
112 |
+
# Display information about the model
|
113 |
+
st.write("### About the Model:")
|
114 |
+
st.write("""
|
115 |
+
This classifier uses:
|
116 |
+
- Facebook's Wav2Vec2 for audio feature extraction
|
117 |
+
- Custom genre classification layer
|
118 |
+
- Pre-trained on speech recognition
|
119 |
+
""")
|
120 |
+
|
121 |
+
st.write("### Supported Genres:")
|
122 |
+
for genre in classifier.genres:
|
123 |
+
st.write(f"- {genre}")
|
124 |
+
|
125 |
+
# Add usage tips
|
126 |
st.write("### Tips for best results:")
|
127 |
+
st.write("- Upload clear, high-quality audio")
|
|
|
|
|
128 |
st.write("- Ideal length: 10-30 seconds")
|
129 |
+
st.write("- Avoid audio with multiple overlapping genres")
|
130 |
+
st.write("- Ensure minimal background noise")
|
131 |
|
132 |
+
# Update requirements.txt
|
133 |
+
if st.sidebar.checkbox("Show requirements.txt contents"):
|
134 |
+
st.sidebar.code("""
|
135 |
+
streamlit==1.31.0
|
136 |
+
torch==2.0.1
|
137 |
+
torchaudio==2.0.1
|
138 |
+
transformers==4.30.2
|
139 |
+
numpy==1.24.3
|
140 |
+
""")
|
141 |
|
142 |
# Footer
|
143 |
st.markdown("---")
|
144 |
+
st.write("Made with ❤️ using Streamlit and Hugging Face Transformers")
|
requirements.txt
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
streamlit==1.31.0
|
|
|
|
|
|
|
2 |
numpy==1.24.3
|
|
|
1 |
streamlit==1.31.0
|
2 |
+
torch==2.0.1
|
3 |
+
torchaudio==2.0.1
|
4 |
+
transformers==4.30.2
|
5 |
numpy==1.24.3
|