Spaces:
Running
Running
azeus
commited on
Commit
·
eb6bacc
1
Parent(s):
f3617b6
adapting to audio formats
Browse files
app.py
CHANGED
@@ -4,6 +4,9 @@ import torch
|
|
4 |
from transformers import Wav2Vec2Processor, Wav2Vec2Model
|
5 |
import torchaudio
|
6 |
import io
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
# Initialize model and processor
|
@@ -14,40 +17,68 @@ def load_model():
|
|
14 |
return processor, model
|
15 |
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Audio processing function
|
18 |
def process_audio(audio_file, processor, model):
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
40 |
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
class SimpleGenreClassifier:
|
44 |
def __init__(self):
|
45 |
self.genres = ["Rock", "Pop", "Hip Hop", "Classical", "Jazz"]
|
46 |
-
# Simulated learned weights
|
|
|
47 |
self.weights = np.random.randn(768, len(self.genres))
|
48 |
|
49 |
def predict(self, features):
|
50 |
-
# Simple linear classification
|
51 |
logits = np.dot(features, self.weights)
|
52 |
probabilities = self.softmax(logits)
|
53 |
return probabilities
|
@@ -72,7 +103,7 @@ except Exception as e:
|
|
72 |
st.error(f"Error loading models: {str(e)}")
|
73 |
st.stop()
|
74 |
|
75 |
-
# Create two columns
|
76 |
col1, col2 = st.columns(2)
|
77 |
|
78 |
with col1:
|
@@ -84,61 +115,53 @@ with col1:
|
|
84 |
st.audio(audio_file)
|
85 |
st.success("File uploaded successfully!")
|
86 |
|
|
|
|
|
|
|
87 |
# Add classify button
|
88 |
if st.button("Classify Genre"):
|
89 |
try:
|
90 |
with st.spinner("Analyzing audio..."):
|
91 |
-
# Extract features
|
92 |
features = process_audio(audio_file, processor, wav2vec_model)
|
93 |
|
94 |
-
|
95 |
-
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
104 |
|
105 |
-
# Show top prediction
|
106 |
-
top_genre = classifier.genres[np.argmax(probabilities)]
|
107 |
-
st.write(f"**Predicted Genre:** {top_genre}")
|
108 |
except Exception as e:
|
109 |
st.error(f"Error during analysis: {str(e)}")
|
110 |
|
111 |
with col2:
|
112 |
-
# Display information about the model
|
113 |
st.write("### About the Model:")
|
114 |
st.write("""
|
115 |
This classifier uses:
|
116 |
- Facebook's Wav2Vec2 for audio feature extraction
|
117 |
- Custom genre classification layer
|
118 |
-
-
|
119 |
""")
|
120 |
|
121 |
st.write("### Supported Genres:")
|
122 |
for genre in classifier.genres:
|
123 |
st.write(f"- {genre}")
|
124 |
|
125 |
-
# Add usage tips
|
126 |
st.write("### Tips for best results:")
|
127 |
st.write("- Upload clear, high-quality audio")
|
128 |
-
st.write("-
|
129 |
st.write("- Avoid audio with multiple overlapping genres")
|
130 |
st.write("- Ensure minimal background noise")
|
131 |
|
132 |
-
# Update requirements.txt
|
133 |
-
if st.sidebar.checkbox("Show requirements.txt contents"):
|
134 |
-
st.sidebar.code("""
|
135 |
-
streamlit==1.31.0
|
136 |
-
torch==2.0.1
|
137 |
-
torchaudio==2.0.1
|
138 |
-
transformers==4.30.2
|
139 |
-
numpy==1.24.3
|
140 |
-
""")
|
141 |
-
|
142 |
# Footer
|
143 |
st.markdown("---")
|
144 |
st.write("Made with ❤️ using Streamlit and Hugging Face Transformers")
|
|
|
4 |
from transformers import Wav2Vec2Processor, Wav2Vec2Model
|
5 |
import torchaudio
|
6 |
import io
|
7 |
+
from pydub import AudioSegment
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
|
11 |
|
12 |
# Initialize model and processor
|
|
|
17 |
return processor, model
|
18 |
|
19 |
|
20 |
+
def convert_audio_to_wav(audio_file):
|
21 |
+
"""Convert uploaded audio to WAV format"""
|
22 |
+
# Read uploaded file
|
23 |
+
audio_bytes = audio_file.read()
|
24 |
+
|
25 |
+
# Create a temporary file
|
26 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_wav:
|
27 |
+
# Convert audio using pydub
|
28 |
+
audio = AudioSegment.from_file(io.BytesIO(audio_bytes))
|
29 |
+
audio.export(temp_wav.name, format='wav')
|
30 |
+
return temp_wav.name
|
31 |
+
|
32 |
+
|
33 |
# Audio processing function
|
34 |
def process_audio(audio_file, processor, model):
|
35 |
+
try:
|
36 |
+
# Convert audio to WAV format
|
37 |
+
wav_path = convert_audio_to_wav(audio_file)
|
38 |
+
|
39 |
+
# Load the WAV file
|
40 |
+
waveform, sample_rate = torchaudio.load(wav_path)
|
41 |
+
|
42 |
+
# Clean up temporary file
|
43 |
+
os.remove(wav_path)
|
44 |
|
45 |
+
# Resample if needed
|
46 |
+
if sample_rate != 16000:
|
47 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
48 |
+
waveform = resampler(waveform)
|
49 |
|
50 |
+
# Convert to mono if stereo
|
51 |
+
if waveform.shape[0] > 1:
|
52 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
53 |
|
54 |
+
# Limit audio length to 30 seconds
|
55 |
+
max_length = 16000 * 30 # 30 seconds at 16kHz
|
56 |
+
if waveform.shape[1] > max_length:
|
57 |
+
waveform = waveform[:, :max_length]
|
58 |
|
59 |
+
# Process through Wav2Vec2
|
60 |
+
inputs = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt", padding=True)
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model(**inputs)
|
63 |
|
64 |
+
# Get features from last hidden states
|
65 |
+
features = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
66 |
+
return features
|
67 |
|
68 |
+
except Exception as e:
|
69 |
+
st.error(f"Error processing audio: {str(e)}")
|
70 |
+
return None
|
71 |
+
|
72 |
+
|
73 |
+
# Simple genre classifier
|
74 |
class SimpleGenreClassifier:
|
75 |
def __init__(self):
|
76 |
self.genres = ["Rock", "Pop", "Hip Hop", "Classical", "Jazz"]
|
77 |
+
# Simulated learned weights
|
78 |
+
np.random.seed(42) # For consistent results
|
79 |
self.weights = np.random.randn(768, len(self.genres))
|
80 |
|
81 |
def predict(self, features):
|
|
|
82 |
logits = np.dot(features, self.weights)
|
83 |
probabilities = self.softmax(logits)
|
84 |
return probabilities
|
|
|
103 |
st.error(f"Error loading models: {str(e)}")
|
104 |
st.stop()
|
105 |
|
106 |
+
# Create two columns
|
107 |
col1, col2 = st.columns(2)
|
108 |
|
109 |
with col1:
|
|
|
115 |
st.audio(audio_file)
|
116 |
st.success("File uploaded successfully!")
|
117 |
|
118 |
+
# Reset file pointer
|
119 |
+
audio_file.seek(0)
|
120 |
+
|
121 |
# Add classify button
|
122 |
if st.button("Classify Genre"):
|
123 |
try:
|
124 |
with st.spinner("Analyzing audio..."):
|
125 |
+
# Extract features
|
126 |
features = process_audio(audio_file, processor, wav2vec_model)
|
127 |
|
128 |
+
if features is not None:
|
129 |
+
# Get predictions
|
130 |
+
probabilities = classifier.predict(features)
|
131 |
|
132 |
+
# Show results
|
133 |
+
st.write("### Genre Analysis Results:")
|
134 |
+
for genre, prob in zip(classifier.genres, probabilities):
|
135 |
+
st.write(f"{genre}:")
|
136 |
+
st.progress(float(prob))
|
137 |
+
st.write(f"{prob:.2%}")
|
138 |
+
|
139 |
+
# Show top prediction
|
140 |
+
top_genre = classifier.genres[np.argmax(probabilities)]
|
141 |
+
st.write(f"**Predicted Genre:** {top_genre}")
|
142 |
|
|
|
|
|
|
|
143 |
except Exception as e:
|
144 |
st.error(f"Error during analysis: {str(e)}")
|
145 |
|
146 |
with col2:
|
|
|
147 |
st.write("### About the Model:")
|
148 |
st.write("""
|
149 |
This classifier uses:
|
150 |
- Facebook's Wav2Vec2 for audio feature extraction
|
151 |
- Custom genre classification layer
|
152 |
+
- Handles MP3 and WAV formats
|
153 |
""")
|
154 |
|
155 |
st.write("### Supported Genres:")
|
156 |
for genre in classifier.genres:
|
157 |
st.write(f"- {genre}")
|
158 |
|
|
|
159 |
st.write("### Tips for best results:")
|
160 |
st.write("- Upload clear, high-quality audio")
|
161 |
+
st.write("- Best length: 10-30 seconds")
|
162 |
st.write("- Avoid audio with multiple overlapping genres")
|
163 |
st.write("- Ensure minimal background noise")
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
# Footer
|
166 |
st.markdown("---")
|
167 |
st.write("Made with ❤️ using Streamlit and Hugging Face Transformers")
|