import streamlit as st from PIL import Image import matplotlib.pyplot as plt import matplotlib.patches as patches from detect import Detection from classify import Classification from compare import Compare # Streamlit app def main(): st.title("Metal Defect Detection and Classification App") det_res = Detection() cls_res = Classification() comp = Compare() uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: # Display uploaded image image = Image.open(uploaded_file) st.image(image, caption='Uploaded Image', use_column_width=True) df = det_res.detect_defect(image) df1 = cls_res.classify_defect(image) # Perform comparison between scores of detection and classification detection_results = comp.comparison(df, df1) # Display results fig, ax = plt.subplots(1) ax.imshow(image) for index, row in detection_results.iterrows(): x1, y1, x2, y2 = row['x1'], row['y1'], row['x2'], row['y2'] width, height = x2 - x1, y2 - y1 rect = patches.Rectangle((x1, y1), width, height, linewidth=1, edgecolor='r', facecolor='none') ax.add_patch(rect) ax.text(x1, y1 - 5, f"{row['fnl_cls']}: {row['fnl_pred']:.2f}", color='r') ax.axis('off') st.pyplot(fig) # Run the app if __name__ == "__main__": main()