simran0608
commited on
Upload 2 files
Browse files- app.py +262 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import pipeline
|
4 |
+
import torch # For GPU checks
|
5 |
+
import numpy as np
|
6 |
+
from groq import Groq
|
7 |
+
import os
|
8 |
+
import time
|
9 |
+
|
10 |
+
# Set page config
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="Restaurant Review Analyzer π½οΈ",
|
13 |
+
page_icon="π",
|
14 |
+
layout="wide"
|
15 |
+
)
|
16 |
+
|
17 |
+
# Custom CSS
|
18 |
+
st.markdown("""
|
19 |
+
<style>
|
20 |
+
.main {
|
21 |
+
padding: 2rem;
|
22 |
+
}
|
23 |
+
.stProgress > div > div > div {
|
24 |
+
background-color: #1f77b4;
|
25 |
+
}
|
26 |
+
.metric-card {
|
27 |
+
background-color: #f8f9fa;
|
28 |
+
padding: 1rem;
|
29 |
+
border-radius: 0.5rem;
|
30 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
31 |
+
}
|
32 |
+
</style>
|
33 |
+
""", unsafe_allow_html=True)
|
34 |
+
|
35 |
+
|
36 |
+
def setup_classifier():
|
37 |
+
"""Initialize the zero-shot classification pipeline with GPU support if available"""
|
38 |
+
with st.spinner('Loading classification model... βοΈ'):
|
39 |
+
device = 0 if torch.cuda.is_available() else -1 # Use GPU if available
|
40 |
+
return pipeline(
|
41 |
+
"zero-shot-classification",
|
42 |
+
model="joeddav/xlm-roberta-large-xnli",
|
43 |
+
device=device
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
def create_aspect_labels():
|
48 |
+
"""Create labels for all aspects with positive/negative sentiment"""
|
49 |
+
aspects = [
|
50 |
+
"food quality",
|
51 |
+
"service",
|
52 |
+
"ambiance",
|
53 |
+
"price",
|
54 |
+
"cleanliness",
|
55 |
+
"portion size",
|
56 |
+
"wait time",
|
57 |
+
"menu variety"
|
58 |
+
]
|
59 |
+
|
60 |
+
sentiment_labels = []
|
61 |
+
for aspect in aspects:
|
62 |
+
sentiment_labels.extend([
|
63 |
+
f"positive {aspect}",
|
64 |
+
f"negative {aspect}"
|
65 |
+
])
|
66 |
+
|
67 |
+
return aspects, sentiment_labels
|
68 |
+
|
69 |
+
|
70 |
+
def classify_review(classifier, review, sentiment_labels):
|
71 |
+
"""Classify a single review across all aspects and sentiments"""
|
72 |
+
if pd.isna(review) or not isinstance(review, str):
|
73 |
+
return {label: 0 for label in sentiment_labels}
|
74 |
+
|
75 |
+
try:
|
76 |
+
result = classifier(
|
77 |
+
review,
|
78 |
+
sentiment_labels,
|
79 |
+
multi_label=True
|
80 |
+
)
|
81 |
+
return dict(zip(result['labels'], result['scores']))
|
82 |
+
except Exception as e:
|
83 |
+
st.error(f"Error processing review: {e}")
|
84 |
+
return {label: 0 for label in sentiment_labels}
|
85 |
+
|
86 |
+
def format_summary_for_llm(summary_df):
|
87 |
+
"""Format the classification summary into a clear text prompt"""
|
88 |
+
summary_text = "Restaurant Reviews Analysis Summary:\n\n"
|
89 |
+
|
90 |
+
sentiment_analysis = {}
|
91 |
+
for aspect in summary_df.index:
|
92 |
+
pos = summary_df.loc[aspect, 'positive_mentions']
|
93 |
+
neg = summary_df.loc[aspect, 'negative_mentions']
|
94 |
+
total = pos + neg
|
95 |
+
if total > 0:
|
96 |
+
pos_percent = (pos / total) * 100
|
97 |
+
neg_percent = (neg / total) * 100
|
98 |
+
difference = pos_percent - neg_percent
|
99 |
+
sentiment_analysis[aspect] = {
|
100 |
+
'difference': difference,
|
101 |
+
'positive_percent': pos_percent,
|
102 |
+
'negative_percent': neg_percent,
|
103 |
+
'total_mentions': total
|
104 |
+
}
|
105 |
+
|
106 |
+
for aspect, metrics in sentiment_analysis.items():
|
107 |
+
summary_text += f"{aspect}:\n"
|
108 |
+
summary_text += f"- Total Mentions: {metrics['total_mentions']}\n"
|
109 |
+
summary_text += f"- Positive Mentions: {metrics['positive_percent']:.1f}%\n"
|
110 |
+
summary_text += f"- Negative Mentions: {metrics['negative_percent']:.1f}%\n"
|
111 |
+
summary_text += f"- Sentiment Difference: {metrics['difference']:.1f}%\n"
|
112 |
+
summary_text += "\n"
|
113 |
+
|
114 |
+
return summary_text
|
115 |
+
|
116 |
+
def generate_insights(groq_client, summary_text):
|
117 |
+
"""Generate insights using Groq API"""
|
118 |
+
prompt = f"""You are an expert restaurant consultant analyzing customer feedback data.
|
119 |
+
Based on the following customer review analysis summary, provide actionable insights
|
120 |
+
and recommendations for the restaurant owner. When analyzing the data:
|
121 |
+
|
122 |
+
- If an aspect has a positive difference of 0.5% or more, consider it a strength
|
123 |
+
- If an aspect has a negative difference of 0.5% or more, consider it an area for improvement
|
124 |
+
- For differences smaller than 0.5%, consider the aspect neutral or mixed
|
125 |
+
- Pay special attention to aspects with high total mentions as they represent stronger customer sentiment
|
126 |
+
|
127 |
+
Analysis Data:
|
128 |
+
{summary_text}
|
129 |
+
|
130 |
+
Please provide:
|
131 |
+
1. Key Strengths: What's working well (aspects with >0.5% positive difference)
|
132 |
+
2. Areas for Improvement: What needs attention (aspects with >0.5% negative difference)
|
133 |
+
3. Mixed Reception Areas: Aspects with minimal difference (<0.5%) between positive and negative
|
134 |
+
4. Actionable Recommendations: Specific steps based on the analysis
|
135 |
+
5. Priority Actions: What should be addressed first, considering both sentiment differences and total mention count
|
136 |
+
|
137 |
+
Format your response in clear sections with bullet points where appropriate.
|
138 |
+
Add relevant emojis to make the response more engaging.
|
139 |
+
"""
|
140 |
+
|
141 |
+
try:
|
142 |
+
with st.spinner('Generating insights... π€'):
|
143 |
+
chat_completion = groq_client.chat.completions.create(
|
144 |
+
messages=[{"role": "user", "content": prompt}],
|
145 |
+
model="mixtral-8x7b-32768",
|
146 |
+
temperature=0.7,
|
147 |
+
max_tokens=1500,
|
148 |
+
)
|
149 |
+
return chat_completion.choices[0].message.content
|
150 |
+
except Exception as e:
|
151 |
+
st.error(f"Error generating insights: {str(e)}")
|
152 |
+
return None
|
153 |
+
|
154 |
+
def main():
|
155 |
+
# Header
|
156 |
+
st.title("π½οΈ Restaurant Review Analyzer")
|
157 |
+
st.markdown("### Transform your customer feedback into actionable insights! π")
|
158 |
+
|
159 |
+
# Sidebar
|
160 |
+
st.sidebar.header("π Configuration")
|
161 |
+
|
162 |
+
# File upload
|
163 |
+
uploaded_file = st.sidebar.file_uploader("Upload your CSV file", type=['csv'])
|
164 |
+
|
165 |
+
if uploaded_file is not None:
|
166 |
+
# Read CSV
|
167 |
+
try:
|
168 |
+
df = pd.read_csv(uploaded_file)
|
169 |
+
df.columns = df.columns.str.strip()
|
170 |
+
|
171 |
+
# Validate 'Review' column
|
172 |
+
if 'Review' not in df.columns:
|
173 |
+
st.error("β 'Review' column not found in the CSV file!")
|
174 |
+
return
|
175 |
+
|
176 |
+
# Show sample of uploaded data
|
177 |
+
st.subheader("π Sample Reviews")
|
178 |
+
st.dataframe(df[['Review']].head(5), use_container_width=True)
|
179 |
+
|
180 |
+
# Process reviews
|
181 |
+
if st.button("π Analyze Reviews"):
|
182 |
+
# Initialize classifier
|
183 |
+
classifier = setup_classifier()
|
184 |
+
aspects, sentiment_labels = create_aspect_labels()
|
185 |
+
|
186 |
+
# Process reviews with progress bar
|
187 |
+
results = []
|
188 |
+
progress_bar = st.progress(0)
|
189 |
+
status_text = st.empty()
|
190 |
+
|
191 |
+
for idx, review in enumerate(df['Review'].head(30)):
|
192 |
+
status_text.text(f"Processing review {idx + 1}/30...")
|
193 |
+
scores = classify_review(classifier, review, sentiment_labels)
|
194 |
+
results.append(scores)
|
195 |
+
progress_bar.progress((idx + 1) / 30)
|
196 |
+
|
197 |
+
results_df = pd.DataFrame(results)
|
198 |
+
|
199 |
+
# Analyze results
|
200 |
+
summary = pd.DataFrame()
|
201 |
+
for aspect in aspects:
|
202 |
+
pos_col = f"positive {aspect}"
|
203 |
+
neg_col = f"negative {aspect}"
|
204 |
+
|
205 |
+
summary.loc[aspect, 'positive_mentions'] = (results_df[pos_col] > 0.5).sum()
|
206 |
+
summary.loc[aspect, 'negative_mentions'] = (results_df[neg_col] > 0.5).sum()
|
207 |
+
summary.loc[aspect, 'avg_positive_score'] = results_df[pos_col].mean()
|
208 |
+
summary.loc[aspect, 'avg_negative_score'] = results_df[neg_col].mean()
|
209 |
+
|
210 |
+
# Display summary in columns
|
211 |
+
st.subheader("π Analysis Summary")
|
212 |
+
col1, col2 = st.columns(2)
|
213 |
+
|
214 |
+
with col1:
|
215 |
+
st.markdown("#### π Positive Mentions")
|
216 |
+
for aspect in aspects:
|
217 |
+
st.metric(
|
218 |
+
label=aspect.title(),
|
219 |
+
value=f"{summary.loc[aspect, 'positive_mentions']} reviews",
|
220 |
+
delta=f"{summary.loc[aspect, 'avg_positive_score']:.2%} avg. confidence"
|
221 |
+
)
|
222 |
+
|
223 |
+
with col2:
|
224 |
+
st.markdown("#### π Negative Mentions")
|
225 |
+
for aspect in aspects:
|
226 |
+
st.metric(
|
227 |
+
label=aspect.title(),
|
228 |
+
value=f"{summary.loc[aspect, 'negative_mentions']} reviews",
|
229 |
+
delta=f"{summary.loc[aspect, 'avg_negative_score']:.2%} avg. confidence",
|
230 |
+
delta_color="inverse"
|
231 |
+
)
|
232 |
+
|
233 |
+
# Generate insights
|
234 |
+
groq_client = Groq(api_key="groq_api_key")
|
235 |
+
|
236 |
+
summary_text = format_summary_for_llm(summary)
|
237 |
+
insights = generate_insights(groq_client, summary_text)
|
238 |
+
|
239 |
+
if insights:
|
240 |
+
st.subheader("π‘ Key Insights and Recommendations")
|
241 |
+
st.markdown(insights)
|
242 |
+
|
243 |
+
except Exception as e:
|
244 |
+
st.error(f"Error processing file: {str(e)}")
|
245 |
+
|
246 |
+
else:
|
247 |
+
# Show welcome message and instructions
|
248 |
+
st.markdown("""
|
249 |
+
### π Welcome to the Restaurant Review Analyzer!
|
250 |
+
|
251 |
+
To get started:
|
252 |
+
1. π Upload your CSV file containing customer reviews
|
253 |
+
2. π Make sure your file has a 'Review' column
|
254 |
+
3. π Click 'Analyze Reviews' to process the data
|
255 |
+
4. π Get detailed insights and recommendations
|
256 |
+
|
257 |
+
The analyzer will process the reviews to provide quick insights!
|
258 |
+
""")
|
259 |
+
|
260 |
+
|
261 |
+
if __name__ == "__main__":
|
262 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
transformers
|
4 |
+
groq
|
5 |
+
numpy
|