badrex's picture
add numpy import
d17dd7e
import gradio as gr
from transformers import pipeline
import os
import numpy as np
import torch
# Load the model
print("Loading model...")
model_id = "badrex/mms-300m-arabic-dialect-identifier"
classifier = pipeline("audio-classification", model=model_id)
print("Model loaded successfully")
# Define dialect mapping
dialect_mapping = {
"MSA": "Modern Standard Arabic",
"Egyptian": "Egyptian Arabic",
"Gulf": "Gulf Arabic",
"Levantine": "Levantine Arabic",
"Maghrebi": "Maghrebi Arabic"
}
def predict_dialect(audio):
if audio is None:
return {"Error": 1.0}
# The audio input from Gradio is a tuple of (sample_rate, audio_array)
sr, audio_array = audio
# Process the audio input
if len(audio_array.shape) > 1:
audio_array = audio_array.mean(axis=1) # Convert stereo to mono
# Convert audio to float32 if it's not already (fix for Chrome recording issue)
if audio_array.dtype != np.float32:
# Normalize to [-1, 1] range as expected by the model
if audio_array.dtype == np.int16:
audio_array = audio_array.astype(np.float32) / 32768.0
else:
audio_array = audio_array.astype(np.float32)
print(f"Processing audio: sample rate={sr}, shape={audio_array.shape}")
# Classify the dialect
predictions = classifier({"sampling_rate": sr, "raw": audio_array})
# Format results for display
results = {}
for pred in predictions:
dialect_name = dialect_mapping.get(pred['label'], pred['label'])
results[dialect_name] = float(pred['score'])
return results
# Manually prepare example file paths without metadata
examples = []
examples_dir = "examples"
if os.path.exists(examples_dir):
for filename in os.listdir(examples_dir):
if filename.endswith((".wav", ".mp3", ".ogg")):
examples.append([os.path.join(examples_dir, filename)])
print(f"Found {len(examples)} example files")
else:
print("Examples directory not found")
# Create the Gradio interface
demo = gr.Interface(
fn=predict_dialect,
inputs=gr.Audio(),
outputs=gr.Label(num_top_classes=5, label="Predicted Dialect"),
title="πŸŽ™οΈ Arabic Dialect Identification in Speech!",
description="""
Use this AI-powered tool to identify five major Arabic varieties from just a short audio clip:
✦ Modern Standard Arabic (MSA) - The formal language of media and education
✦ Egyptian Arabic - The dialect of Cairo, Alexandria, and popular Arabic cinema
✦ Gulf Arabic - Spoken across Saudi Arabia, UAE, Kuwait, Qatar, Bahrain, and Oman
✦ Levantine Arabic - The dialect of Syria, Lebanon, Jordan, and Palestine
✦ Maghrebi Arabic - The distinctive varieties of Morocco, Algeria, Tunisia, and Libya
Simply **upload an audio file** or **record yourself speaking** to see which dialect you match! Perfect for language learners, linguistics enthusiasts, or anyone curious about Arabic language variation.
The demo is based on a Transformer model adapted for the ADI task [badrex/mms-300m-arabic-dialect-identifier](https://huggingface.co/badrex/mms-300m-arabic-dialect-identifier).
Developed with β€οΈπŸ€πŸ’š by [Badr Alabsi](https://badrex.github.io/)""",
examples=examples if examples else None,
cache_examples=False, # Disable caching to avoid issues
flagging_mode=None
)
# Launch the app
demo.launch()