import gradio as gr from transformers import pipeline import os import numpy as np import torch # Load the model print("Loading model...") model_id = "badrex/mms-300m-arabic-dialect-identifier" classifier = pipeline("audio-classification", model=model_id) print("Model loaded successfully") # Define dialect mapping dialect_mapping = { "MSA": "Modern Standard Arabic", "Egyptian": "Egyptian Arabic", "Gulf": "Gulf Arabic", "Levantine": "Levantine Arabic", "Maghrebi": "Maghrebi Arabic" } def predict_dialect(audio): if audio is None: return {"Error": 1.0} # The audio input from Gradio is a tuple of (sample_rate, audio_array) sr, audio_array = audio # Process the audio input if len(audio_array.shape) > 1: audio_array = audio_array.mean(axis=1) # Convert stereo to mono # Convert audio to float32 if it's not already (fix for Chrome recording issue) if audio_array.dtype != np.float32: # Normalize to [-1, 1] range as expected by the model if audio_array.dtype == np.int16: audio_array = audio_array.astype(np.float32) / 32768.0 else: audio_array = audio_array.astype(np.float32) print(f"Processing audio: sample rate={sr}, shape={audio_array.shape}") # Classify the dialect predictions = classifier({"sampling_rate": sr, "raw": audio_array}) # Format results for display results = {} for pred in predictions: dialect_name = dialect_mapping.get(pred['label'], pred['label']) results[dialect_name] = float(pred['score']) return results # Manually prepare example file paths without metadata examples = [] examples_dir = "examples" if os.path.exists(examples_dir): for filename in os.listdir(examples_dir): if filename.endswith((".wav", ".mp3", ".ogg")): examples.append([os.path.join(examples_dir, filename)]) print(f"Found {len(examples)} example files") else: print("Examples directory not found") # Create the Gradio interface demo = gr.Interface( fn=predict_dialect, inputs=gr.Audio(), outputs=gr.Label(num_top_classes=5, label="Predicted Dialect"), title="🎙️ Arabic Dialect Identification in Speech!", description=""" Use this AI-powered tool to identify five major Arabic varieties from just a short audio clip: ✦ Modern Standard Arabic (MSA) - The formal language of media and education ✦ Egyptian Arabic - The dialect of Cairo, Alexandria, and popular Arabic cinema ✦ Gulf Arabic - Spoken across Saudi Arabia, UAE, Kuwait, Qatar, Bahrain, and Oman ✦ Levantine Arabic - The dialect of Syria, Lebanon, Jordan, and Palestine ✦ Maghrebi Arabic - The distinctive varieties of Morocco, Algeria, Tunisia, and Libya Simply **upload an audio file** or **record yourself speaking** to see which dialect you match! Perfect for language learners, linguistics enthusiasts, or anyone curious about Arabic language variation. The demo is based on a Transformer model adapted for the ADI task [badrex/mms-300m-arabic-dialect-identifier](https://huggingface.co/badrex/mms-300m-arabic-dialect-identifier). Developed with ❤️🤍💚 by [Badr Alabsi](https://badrex.github.io/)""", examples=examples if examples else None, cache_examples=False, # Disable caching to avoid issues flagging_mode=None ) # Launch the app demo.launch()