baohuynhbk14's picture
Add image processing functions and update error messages in utils.py
b30d21d
raw
history blame
20.9 kB
import spaces
import argparse
from ast import parse
import datetime
import json
import os
import time
import hashlib
import re
import torch
import gradio as gr
import requests
import random
from filelock import FileLock
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
from models import load_image
from constants import LOGDIR
from utils import (
build_logger,
server_error_msg,
violates_moderation,
moderation_msg,
load_image_from_base64,
get_log_filename,
)
from threading import Thread
import traceback
# import torch
from conversation import Conversation
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "Vintern-Chat Client"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
@spaces.GPU(duration=10)
def make_zerogpu_happy():
pass
def write2file(path, content):
lock = FileLock(f"{path}.lock")
with lock:
with open(path, "a") as fout:
fout.write(content)
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def init_state(state=None):
if state is not None:
del state
return Conversation()
def vote_last_response(state, liked, request: gr.Request):
conv_data = {
"tstamp": round(time.time(), 4),
"like": liked,
"model": 'Vintern-1B-v3',
"state": state.dict(),
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(conv_data) + "\n")
def upvote_last_response(state, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, True, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def downvote_last_response(state, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, False, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def vote_selected_response(
state, request: gr.Request, data: gr.LikeData
):
logger.info(
f"Vote: {data.liked}, index: {data.index}, value: {data.value} , ip: {request.client.host}"
)
conv_data = {
"tstamp": round(time.time(), 4),
"like": data.liked,
"index": data.index,
"model": 'Vintern-1B-v3',
"state": state.dict(),
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(conv_data) + "\n")
return
def flag_last_response(state, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
# state.messages[-1][-1] = None
state.update_message(Conversation.ASSISTANT, content='', image=None, idx=-1)
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = init_state()
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5
def add_text(state, message, system_prompt, request: gr.Request):
print(f"state: {state}")
if not state:
state = init_state()
images = message.get("files", [])
text = message.get("text", "").strip()
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
# import pdb; pdb.set_trace()
textbox = gr.MultimodalTextbox(value=None, interactive=False)
if len(text) <= 0 and len(images) == 0:
state.skip_next = True
return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
textbox = gr.MultimodalTextbox(
value={"text": moderation_msg}, interactive=True
)
return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 5
images = [Image.open(path).convert("RGB") for path in images]
if len(images) > 0 and len(state.get_images(source=state.USER)) > 0:
state = init_state(state)
state.set_system_message(system_prompt)
state.append_message(Conversation.USER, text, images)
state.skip_next = False
return (state, state.to_gradio_chatbot(), textbox) + (
disable_btn,
) * 5
model_name = "5CD-AI/Vintern-1B-v3_5"
model = None
model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
def http_bot(
state,
temperature,
top_p,
repetition_penalty,
max_new_tokens,
max_input_tiles,
request: gr.Request,
):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
if hasattr(state, "skip_next") and state.skip_next:
# This generate call is skipped due to invalid inputs
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (no_change_btn,) * 5
return
if model is None:
# state.messages[-1][-1] = server_error_msg
state.update_message(Conversation.ASSISTANT, server_error_msg)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
all_images = state.get_images(source=state.USER)
all_image_paths = [state.save_image(image) for image in all_images]
state.append_message(Conversation.ASSISTANT, state.streaming_placeholder)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 5
try:
# Stream output
# response = requests.post(worker_addr, json=pload, headers=headers, stream=True, timeout=300)
print(f"all_image_paths: {all_image_paths}")
pixel_values = load_image(all_image_paths[0], max_num=6).to(torch.bfloat16)
print(f"pixel_values: {pixel_values}")
generation_config = dict(max_new_tokens= 700, do_sample=False, num_beams = 3, repetition_penalty=2.5)
message = state.get_user_message(source=state.USER)
print(f"######################")
print(f"message: {message}")
if pixel_values is not None:
question = '<image>\n'+message
else:
question = message
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f"AI response: {response}")
# streamer = TextIteratorStreamer(
# tokenizer, skip_prompt=True, skip_special_tokens=True
# )
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
# thread.start()
# response = "This is a test response"
buffer = ""
for new_text in response:
buffer += new_text
# Remove <|im_end|> or similar tokens from the output
buffer = buffer.replace("<|im_end|>", "")
state.update_message(Conversation.ASSISTANT, buffer + state.streaming_placeholder, None)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 5
except Exception as e:
logger.error(f"Error in http_bot: {e}")
traceback.print_exc()
state.update_message(Conversation.ASSISTANT, server_error_msg, None)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
ai_response = state.return_last_message()
logger.info(f"==== response ====\n{ai_response}")
state.end_of_current_turn()
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (enable_btn,) * 5
finish_tstamp = time.time()
logger.info(f"{buffer}")
data = {
"tstamp": round(finish_tstamp, 4),
"like": None,
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"images": all_image_paths,
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(data) + "\n")
# <h1 style="font-size: 28px; font-weight: bold;">Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling</h1>
title_html = """
<div style="text-align: center;">
<img src="https://lh3.googleusercontent.com/pw/AP1GczMmW-aFQ4dNaR_LCAllh4UZLLx9fTZ1ITHeGVMWx-1bwlIWz4VsWJSGb3_9C7CQfvboqJH41y2Sbc5ToC9ZmKeV4-buf_DEevIMU0HtaLWgHAPOqBiIbG6LaE8CvDqniLZzvB9UX8TR_-YgvYzPFt2z=w1472-h832-s-no-gm?authuser=0" style="height: 100; width: 100%;">
<p>Vintern-1B: An Efficient Multimodal Large Language Model for Vietnamese</p>
<a href="https://huggingface.co/papers/2408.12480">[📖 Vintern Paper]</a>
<a href="https://huggingface.co/5CD-AI">[🤗 5CD-AI Huggingface]</a>
</div>
"""
tos_markdown = """
### Terms of use
By using this service, users are required to agree to the following terms:
It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
"""
# .gradio-container {margin: 5px 10px 0 10px !important};
block_css = """
.gradio-container {margin: 0.1% 1% 0 1% !important; max-width: 98% !important;};
#buttons button {
min-width: min(120px,100%);
}
.gradient-text {
font-size: 28px;
width: auto;
font-weight: bold;
background: linear-gradient(45deg, red, orange, yellow, green, blue, indigo, violet);
background-clip: text;
-webkit-background-clip: text;
color: transparent;
}
.plain-text {
font-size: 22px;
width: auto;
font-weight: bold;
}
"""
# js = """
# function createWaveAnimation() {
# const text = document.getElementById('text');
# var i = 0;
# setInterval(function() {
# const colors = [
# 'red, orange, yellow, green, blue, indigo, violet, purple',
# 'orange, yellow, green, blue, indigo, violet, purple, red',
# 'yellow, green, blue, indigo, violet, purple, red, orange',
# 'green, blue, indigo, violet, purple, red, orange, yellow',
# 'blue, indigo, violet, purple, red, orange, yellow, green',
# 'indigo, violet, purple, red, orange, yellow, green, blue',
# 'violet, purple, red, orange, yellow, green, blue, indigo',
# 'purple, red, orange, yellow, green, blue, indigo, violet',
# ];
# const angle = 45;
# const colorIndex = i % colors.length;
# text.style.background = `linear-gradient(${angle}deg, ${colors[colorIndex]})`;
# text.style.webkitBackgroundClip = 'text';
# text.style.backgroundClip = 'text';
# text.style.color = 'transparent';
# text.style.fontSize = '28px';
# text.style.width = 'auto';
# text.textContent = 'Vintern-1B';
# text.style.fontWeight = 'bold';
# i += 1;
# }, 200);
# const params = new URLSearchParams(window.location.search);
# url_params = Object.fromEntries(params);
# // console.log(url_params);
# // console.log('hello world...');
# // console.log(window.location.search);
# // console.log('hello world...');
# // alert(window.location.search)
# // alert(url_params);
# return url_params;
# }
# """
def build_demo():
textbox = gr.MultimodalTextbox(
interactive=True,
file_types=["image", "video"],
placeholder="Enter message or upload file...",
show_label=False,
)
with gr.Blocks(
title="Vintern-Chat",
theme=gr.themes.Default(),
css=block_css,
) as demo:
state = gr.State()
with gr.Row():
with gr.Column(scale=2):
# gr.Image('./gallery/logo-47b364d3.jpg')
gr.HTML(title_html)
with gr.Accordion("Settings", open=False) as setting_row:
system_prompt = gr.Textbox(
value="请尽可能详细地回答用户的问题。",
label="System Prompt",
interactive=True,
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=1.5,
value=1.1,
step=0.02,
interactive=True,
label="Repetition penalty",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=1024,
step=64,
interactive=True,
label="Max output tokens",
)
max_input_tiles = gr.Slider(
minimum=1,
maximum=32,
value=12,
step=1,
interactive=True,
label="Max input tiles (control the image size)",
)
examples = gr.Examples(
examples=[
[
{
"files": [
"gallery/14.jfif",
],
"text": "Please help me analyze this picture.",
}
],
[
{
"files": [
"gallery/1-2.PNG",
],
"text": "Implement this flow chart using python",
}
],
[
{
"files": [
"gallery/15.PNG",
],
"text": "Please help me analyze this picture.",
}
],
],
inputs=[textbox],
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="Vintern",
height=580,
show_copy_button=True,
show_share_button=True,
avatar_images=[
"assets/human.png",
"assets/assistant.png",
],
bubble_full_width=False,
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(
value="🔄 Regenerate", interactive=False
)
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
gr.Markdown(tos_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
downvote_btn.click(
downvote_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
chatbot.like(
vote_selected_response,
[state],
[],
)
flag_btn.click(
flag_last_response,
[state],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
regenerate_btn.click(
regenerate,
[state, system_prompt],
[state, chatbot, textbox] + btn_list,
).then(
http_bot,
[
state,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
textbox.submit(
add_text,
[state, textbox, system_prompt],
[state, chatbot, textbox] + btn_list,
).then(
http_bot,
[
state,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
submit_btn.click(
add_text,
[state, textbox, system_prompt],
[state, chatbot, textbox] + btn_list,
).then(
http_bot,
[
state,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
logger.info(args)
demo = build_demo()
demo.queue(api_open=False).launch(
server_name=args.host,
server_port=args.port,
share=args.share,
max_threads=args.concurrency_count,
)