File size: 15,964 Bytes
d73c58e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, field_validator
from typing import Optional, List, Union, Dict, Any
import torch
from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
    BitsAndBytesConfig
)
from qwen_vl_utils import process_vision_info
import uvicorn
import json
from datetime import datetime
import logging
import time
import psutil
import GPUtil
import base64
from PIL import Image
import io
import os
import threading

# Set environment variables to disable compilation cache and avoid CUDA kernel issues
os.environ["CUDA_LAUNCH_BLOCKING"] = "0"
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0"  # Compatible with A5000

# Model configuration
MODELS = {
    "Qwen2.5-VL-7B-Instruct": {
        "path": "Qwen/Qwen2.5-VL-7B-Instruct",
        "model_class": Qwen2_5_VLForConditionalGeneration,
    },
    "Qwen2-VL-7B-Instruct": {
        "path": "Qwen/Qwen2-VL-7B-Instruct",
        "model_class": Qwen2VLForConditionalGeneration,
    },
    "Qwen2-VL-2B-Instruct": {
        "path": "Qwen/Qwen2-VL-2B-Instruct",
        "model_class": Qwen2VLForConditionalGeneration,
    }
}

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Global variables
models = {}
processors = {}
model_locks = {}  # Thread locks for model loading
last_used = {}    # Record last use time of models

# Set default CUDA device
if torch.cuda.is_available():
    # Get GPU information and select the device with maximum memory
    gpus = GPUtil.getGPUs()
    if gpus:
        max_memory_gpu = max(gpus, key=lambda g: g.memoryTotal)
        selected_device = max_memory_gpu.id
        torch.cuda.set_device(selected_device)
        device = torch.device(f"cuda:{selected_device}")
        logger.info(f"Selected GPU {selected_device} ({max_memory_gpu.name}) with {max_memory_gpu.memoryTotal}MB memory")
    else:
        device = torch.device("cuda:0")
else:
    device = torch.device("cpu")
logger.info(f"Using device: {device}")

class ImageURL(BaseModel):
    url: str

class MessageContent(BaseModel):
    type: str
    text: Optional[str] = None
    image_url: Optional[Dict[str, str]] = None

    @field_validator('type')
    @classmethod
    def validate_type(cls, v: str) -> str:
        if v not in ['text', 'image_url']:
            raise ValueError(f"Invalid content type: {v}")
        return v

class ChatMessage(BaseModel):
    role: str
    content: Union[str, List[MessageContent]]

    @field_validator('role')
    @classmethod
    def validate_role(cls, v: str) -> str:
        if v not in ['system', 'user', 'assistant']:
            raise ValueError(f"Invalid role: {v}")
        return v

    @field_validator('content')
    @classmethod
    def validate_content(cls, v: Union[str, List[Any]]) -> Union[str, List[MessageContent]]:
        if isinstance(v, str):
            return v
        if isinstance(v, list):
            return [MessageContent(**item) if isinstance(item, dict) else item for item in v]
        raise ValueError("Content must be either a string or a list of content items")

class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[ChatMessage]
    temperature: Optional[float] = 0.7
    top_p: Optional[float] = 0.95
    max_tokens: Optional[int] = 2048
    stream: Optional[bool] = False
    response_format: Optional[Dict[str, str]] = None

class ChatCompletionResponse(BaseModel):
    id: str
    object: str
    created: int
    model: str
    choices: List[Dict[str, Any]]
    usage: Dict[str, int]

class ModelCard(BaseModel):
    id: str
    created: int
    owned_by: str
    permission: List[Dict[str, Any]] = []
    root: Optional[str] = None
    parent: Optional[str] = None
    capabilities: Optional[Dict[str, bool]] = None
    context_window: Optional[int] = None
    max_tokens: Optional[int] = None

class ModelList(BaseModel):
    object: str = "list"
    data: List[ModelCard]

def process_base64_image(base64_string: str) -> Image.Image:
    """Process base64 image data and return PIL Image"""
    try:
        # Remove data URL prefix if present
        if 'base64,' in base64_string:
            base64_string = base64_string.split('base64,')[1]
        
        image_data = base64.b64decode(base64_string)
        image = Image.open(io.BytesIO(image_data))
        
        # Convert to RGB if necessary
        if image.mode not in ('RGB', 'L'):
            image = image.convert('RGB')
        
        return image
    except Exception as e:
        logger.error(f"Error processing base64 image: {str(e)}")
        raise ValueError(f"Invalid base64 image data: {str(e)}")

def log_system_info():
    """Log system resource information"""
    try:
        cpu_percent = psutil.cpu_percent(interval=1)
        memory = psutil.virtual_memory()
        gpu_info = []
        if torch.cuda.is_available():
            for gpu in GPUtil.getGPUs():
                gpu_info.append({
                    'id': gpu.id,
                    'name': gpu.name,
                    'load': f"{gpu.load*100}%",
                    'memory_used': f"{gpu.memoryUsed}MB/{gpu.memoryTotal}MB",
                    'temperature': f"{gpu.temperature}°C"
                })
        logger.info(f"System Info - CPU: {cpu_percent}%, RAM: {memory.percent}%, "
                   f"Available RAM: {memory.available/1024/1024/1024:.1f}GB")
        if gpu_info:
            logger.info(f"GPU Info: {gpu_info}")
    except Exception as e:
        logger.warning(f"Failed to log system info: {str(e)}")

def get_or_initialize_model(model_name: str):
    """Get or initialize a model if not already loaded"""
    global models, processors, model_locks, last_used
    
    if model_name not in MODELS:
        available_models = list(MODELS.keys())
        raise ValueError(f"Unsupported model: {model_name}\nAvailable models: {available_models}")
    
    # Initialize lock for the model (if not already done)
    if model_name not in model_locks:
        model_locks[model_name] = threading.Lock()
    
    with model_locks[model_name]:
        if model_name not in models or model_name not in processors:
            try:
                start_time = time.time()
                logger.info(f"Starting {model_name} initialization...")
                log_system_info()
                
                model_config = MODELS[model_name]
                
                # Configure 8-bit quantization
                quantization_config = BitsAndBytesConfig(
                    load_in_8bit=True,
                    bnb_4bit_compute_dtype=torch.float16,
                    bnb_4bit_use_double_quant=False,
                    bnb_4bit_quant_type="nf4",
                )
                
                logger.info(f"Loading {model_name} with 8-bit quantization...")
                model = model_config["model_class"].from_pretrained(
                    model_config["path"],
                    quantization_config=quantization_config,
                    device_map={"": device.index if device.type == "cuda" else "cpu"},
                    local_files_only=False
                ).eval()
                
                processor = AutoProcessor.from_pretrained(
                    model_config["path"],
                    local_files_only=False
                )
                
                models[model_name] = model
                processors[model_name] = processor
                
                end_time = time.time()
                logger.info(f"Model {model_name} initialized in {end_time - start_time:.2f} seconds")
                log_system_info()
                
            except Exception as e:
                logger.error(f"Model initialization error for {model_name}: {str(e)}", exc_info=True)
                raise RuntimeError(f"Failed to initialize model {model_name}: {str(e)}")
        
        # Update last use time
        last_used[model_name] = time.time()
        
        return models[model_name], processors[model_name]

@asynccontextmanager
async def lifespan(app: FastAPI):
    logger.info("Starting application initialization...")
    try:
        yield
    finally:
        logger.info("Shutting down application...")
        global models, processors
        for model_name, model in models.items():
            try:
                del model
                logger.info(f"Model {model_name} unloaded")
            except Exception as e:
                logger.error(f"Error during cleanup of {model_name}: {str(e)}")
        
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            logger.info("CUDA cache cleared")
        
        models = {}
        processors = {}
        logger.info("Shutdown complete")

app = FastAPI(
    title="Qwen2.5-VL API",
    description="OpenAI-compatible API for Qwen2.5-VL vision-language model",
    version="1.0.0",
    lifespan=lifespan
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/v1/models", response_model=ModelList)
async def list_models():
    """List available models"""
    model_cards = []
    for model_name in MODELS.keys():
        model_cards.append(
            ModelCard(
                id=model_name,
                created=1709251200,
                owned_by="Qwen",
                permission=[{
                    "id": f"modelperm-{model_name}",
                    "created": 1709251200,
                    "allow_create_engine": False,
                    "allow_sampling": True,
                    "allow_logprobs": True,
                    "allow_search_indices": False,
                    "allow_view": True,
                    "allow_fine_tuning": False,
                    "organization": "*",
                    "group": None,
                    "is_blocking": False
                }],
                capabilities={
                    "vision": True,
                    "chat": True,
                    "embeddings": False,
                    "text_completion": True
                },
                context_window=4096,
                max_tokens=2048
            )
        )
    return ModelList(data=model_cards)

@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def chat_completions(request: ChatCompletionRequest):
    """Handle chat completion requests with vision support"""
    try:
        # Get or initialize requested model
        model, processor = get_or_initialize_model(request.model)
        
        request_start_time = time.time()
        logger.info(f"Received chat completion request for model: {request.model}")
        logger.info(f"Request content: {request.model_dump_json()}")
        
        messages = []
        for msg in request.messages:
            if isinstance(msg.content, str):
                messages.append({"role": msg.role, "content": msg.content})
            else:
                processed_content = []
                for content_item in msg.content:
                    if content_item.type == "text":
                        processed_content.append({
                            "type": "text",
                            "text": content_item.text
                        })
                    elif content_item.type == "image_url":
                        if "url" in content_item.image_url:
                            if content_item.image_url["url"].startswith("data:image"):
                                processed_content.append({
                                    "type": "image",
                                    "image": process_base64_image(content_item.image_url["url"])
                                })
                messages.append({"role": msg.role, "content": processed_content})
        
        text = processor.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        
        image_inputs, video_inputs = process_vision_info(messages)
        
        # Ensure input data is on the correct device
        inputs = processor(
            text=[text],
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt"
        )
        
        # Move all tensors to specified device
        input_tensors = {k: v.to(device) if hasattr(v, 'to') else v for k, v in inputs.items()}
        
        with torch.inference_mode():
            generated_ids = model.generate(
                **input_tensors,
                max_new_tokens=request.max_tokens,
                temperature=request.temperature,
                top_p=request.top_p,
                pad_token_id=processor.tokenizer.pad_token_id,
                eos_token_id=processor.tokenizer.eos_token_id
            )
        
        # Get input length and trim generated IDs
        input_length = input_tensors['input_ids'].shape[1]
        generated_ids_trimmed = generated_ids[:, input_length:]
        
        response = processor.batch_decode(
            generated_ids_trimmed,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=False
        )[0]
        
        if request.response_format and request.response_format.get("type") == "json_object":
            try:
                if response.startswith('```'):
                    response = '\n'.join(response.split('\n')[1:-1])
                if response.startswith('json'):
                    response = response[4:].lstrip()
                content = json.loads(response)
                response = json.dumps(content)
            except json.JSONDecodeError as e:
                logger.error(f"JSON parsing error: {str(e)}")
                raise HTTPException(status_code=400, detail=f"Invalid JSON response: {str(e)}")
        
        total_time = time.time() - request_start_time
        logger.info(f"Request completed in {total_time:.2f} seconds")
        
        return ChatCompletionResponse(
            id=f"chatcmpl-{datetime.now().strftime('%Y%m%d%H%M%S')}",
            object="chat.completion",
            created=int(datetime.now().timestamp()),
            model=request.model,
            choices=[{
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": response
                },
                "finish_reason": "stop"
            }],
            usage={
                "prompt_tokens": input_length,
                "completion_tokens": len(generated_ids_trimmed[0]),
                "total_tokens": input_length + len(generated_ids_trimmed[0])
            }
        )
    except Exception as e:
        logger.error(f"Request error: {str(e)}", exc_info=True)
        if isinstance(e, HTTPException):
            raise
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health_check():
    """Health check endpoint"""
    log_system_info()
    return {
        "status": "healthy",
        "loaded_models": list(models.keys()),
        "device": str(device),
        "cuda_available": torch.cuda.is_available(),
        "cuda_device_count": torch.cuda.device_count() if torch.cuda.is_available() else 0,
        "timestamp": datetime.now().isoformat()
    }

@app.get("/model_status")
async def model_status():
    """Get the status of all models"""
    status = {}
    for model_name in MODELS:
        status[model_name] = {
            "loaded": model_name in models,
            "last_used": last_used.get(model_name, None),
            "available": model_name in MODELS
        }
    return status

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=9192)