|
import streamlit as st |
|
from utils import validate_sequence, predict, plot_prediction_graphs |
|
from model import models |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
|
|
def main(): |
|
st.set_page_config(layout="wide") |
|
st.title("AA Property Inference Demo", anchor=None) |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.reportview-container { |
|
font-family: 'Courier New', monospace; |
|
} |
|
</style> |
|
<p style='font-size:16px;'><span style='font-size:24px;'>←</span> Don't know where to start? Open tab to input a sequence.</p> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
sequence = st.sidebar.text_input("Enter your amino acid sequence:") |
|
uploaded_file = st.sidebar.file_uploader("Or upload a CSV file with amino acid sequences", type="csv") |
|
analyze_pressed = st.sidebar.button("Analyze Sequence") |
|
show_graphs = st.sidebar.checkbox("Show Prediction Graphs") |
|
|
|
sequences = [sequence] if sequence else [] |
|
if uploaded_file: |
|
df = pd.read_csv(uploaded_file) |
|
sequences.extend(df['sequence'].tolist()) |
|
names = df['name'].tolist() |
|
else: |
|
names = [f"Seq {i+1}" for i in range(len(sequences))] |
|
|
|
results = [] |
|
all_data = {} |
|
if analyze_pressed: |
|
for name, seq in zip(names, sequences): |
|
if validate_sequence(seq): |
|
model_results = {} |
|
graph_data = {} |
|
for model_name, model in models.items(): |
|
prediction, confidence = predict(model, seq) |
|
model_results[f"{model_name}_prediction"] = prediction |
|
model_results[f"{model_name}_confidence"] = round(confidence, 3) |
|
graph_data[model_name] = (prediction, confidence) |
|
results.append({"Name": name, "Sequence": seq, **model_results}) |
|
all_data[name] = graph_data |
|
else: |
|
st.sidebar.error(f"Invalid sequence for {name}: {seq}") |
|
|
|
if results: |
|
results_df = pd.DataFrame(results) |
|
st.write("### Results") |
|
st.dataframe(results_df.style.format(precision=3), width=None, height=None) |
|
|
|
if show_graphs and all_data: |
|
st.write("## Graphs") |
|
plot_prediction_graphs(all_data,models.keys()) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|