import streamlit as st from utils import validate_sequence, predict, plot_prediction_graphs from model import models import pandas as pd import matplotlib.pyplot as plt import seaborn as sns def main(): st.set_page_config(layout="wide") # Keep the wide layout for overall flexibility st.title("AA Property Inference Demo", anchor=None) # Instructional text below title st.markdown("""

Don't know where to start? Open tab to input a sequence.

""", unsafe_allow_html=True) # Input section in the sidebar sequence = st.sidebar.text_input("Enter your amino acid sequence:") uploaded_file = st.sidebar.file_uploader("Or upload a CSV file with amino acid sequences", type="csv") analyze_pressed = st.sidebar.button("Analyze Sequence") show_graphs = st.sidebar.checkbox("Show Prediction Graphs") sequences = [sequence] if sequence else [] if uploaded_file: df = pd.read_csv(uploaded_file) sequences.extend(df['sequence'].tolist()) names = df['name'].tolist() # Store names from the CSV file else: names = [f"Seq {i+1}" for i in range(len(sequences))] # Default names if no file results = [] all_data = {} if analyze_pressed: for name, seq in zip(names, sequences): if validate_sequence(seq): model_results = {} graph_data = {} for model_name, model in models.items(): prediction, confidence = predict(model, seq) model_results[f"{model_name}_prediction"] = prediction model_results[f"{model_name}_confidence"] = round(confidence, 3) graph_data[model_name] = (prediction, confidence) results.append({"Name": name, "Sequence": seq, **model_results}) all_data[name] = graph_data # Use name as key else: st.sidebar.error(f"Invalid sequence for {name}: {seq}") if results: results_df = pd.DataFrame(results) st.write("### Results") st.dataframe(results_df.style.format(precision=3), width=None, height=None) if show_graphs and all_data: st.write("## Graphs") plot_prediction_graphs(all_data,models.keys()) if __name__ == "__main__": main()