import streamlit as st from transformers import AutoTokenizer import torch import torch.nn.functional as F import matplotlib.pyplot as plt import seaborn as sns def validate_sequence(sequence): valid_amino_acids = set("ACDEFGHIKLMNPQRSTVWY") # 20 standard amino acids return all(aa in valid_amino_acids for aa in sequence) and len(sequence) <= 200 def load_model(model_name): # Load the model based on the provided name model = torch.load(f'{model_name}_model.pth', map_location=torch.device('cpu')) model.eval() return model def predict(model, sequence): tokenizer = AutoTokenizer.from_pretrained('facebook/esm2_t6_8M_UR50D') tokenized_input = tokenizer(sequence, return_tensors="pt", truncation=True, padding=True) output = model(**tokenized_input) probabilities = F.softmax(output.logits, dim=-1) predicted_label = torch.argmax(probabilities, dim=-1) confidence = probabilities.max().item() * 0.85 return predicted_label.item(), confidence def plot_prediction_graphs(data,model_keys): # Create a color palette that is consistent across graphs unique_names = sorted(data.keys()) # Using names instead of sequences palette = sns.color_palette("hsv", len(unique_names)) color_dict = {name: color for name, color in zip(unique_names, palette)} for model_name in model_keys: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6), sharey=True) for prediction_val in [0, 1]: ax = ax1 if prediction_val == 0 else ax2 filtered_data = {name: values[model_name] for name, values in data.items() if values[model_name][0] == prediction_val} # Sorting names based on confidence, descending sorted_names = sorted(filtered_data.items(), key=lambda x: x[1][1], reverse=True) names = [x[0] for x in sorted_names] conf_values = [x[1][1] for x in sorted_names] colors = [color_dict[name] for name in names] sns.barplot(x=names, y=conf_values, palette=colors, ax=ax) ax.set_title(f'Confidence Scores for {model_name.capitalize()} (Prediction {prediction_val})') ax.set_xlabel('Names') ax.set_ylabel('Confidence') ax.tick_params(axis='x', rotation=45) # Rotate x labels for better visibility st.pyplot(fig)