Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
from huggingface_hub import login | |
from huggingface_hub import InferenceClient | |
import spaces | |
# Retrieve API key and authenticate | |
api_key = os.getenv("LLAMA") | |
login(api_key) | |
# Initialize InferenceClient for the Llama model | |
client = InferenceClient("meta-llama/Llama-3.1-70B-Instruct") | |
def respond( | |
message, | |
history: list[dict], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Start with the system message | |
messages = [{"role": "system", "content": system_message}] | |
# Add the conversation history | |
messages += history | |
# Add the latest user message | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# Send the conversation to the model and stream the response | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Initialize the Gradio ChatInterface with the new format | |
demo = gr.ChatInterface( | |
respond, | |
type="messages", # Use the OpenAI-style format | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a helpful Customer Support assistant that specializes in the low-code software company: 'Plant an App' and tech-related topics.", | |
label="System message" | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)" | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |